Библиография
Вулкан:
Группировать:  
Выбрать:     Все     A     B     C     D     E     F     G     H     I     J     K     L     M     N     O     P     R     S     T     V     W     Y     Z     А     Б     В     Г     Д     Е     Ж     З     И     К     Л     М     Н     О     П     Р     С     Т     У     Ф     Х     Ц     Ч     Ш     Щ     Э     Я     
Записей: 4
Страницы:  1
 H
Hasegawa Takeshi, Nakagawa Mitsuhiro, Yoshimoto Mitsuhiro, Ishizuka Yoshihiro, Hirose Wataru, Seki Sho-ichi, Ponomareva Vera, Rybin Alexander Tephrostratigraphy and petrological study of Chikurachki and Fuss volcanoes, western Paramushir Island, northern Kurile Islands: Evaluation of Holocene eruptive activity and temporal change of magma system // Quaternary International. 2011. Vol. 246. № 1–2. P. 278 - 297. doi: 10.1016/j.quaint.2011.06.047.
   Аннотация
A tephrostratigraphic and petrological study of the Chikurachki (1816 m)-Tatarinov-Lomonosov volcanic chain (CTL volcanic chain) and Fuss (1772 m), located at the southern part of Paramushir Island in the northern Kurile Islands, was carried out to reveal the explosive eruption history during the Holocene and the temporal change of the magma systems of these active volcanoes. Tephra successions were described at 54 sites, and more than 20 major eruptive units were identified, consisting of pumice fall, scoria fall and ash fall deposits, each of which are separated by paleosol or peat layers. The source volcano of each recognized tephra layer was confirmed by correlation with proximal deposits of each eruption center with respect to petrography and whole-rock and glass chemistry. The age of each layer was determined by radiocarbon dating and the stratigraphic relationship with the dated, widespread tephra from Kamchatka according to the thickness of paleosols bracketed between tephra layers. The Holocene activity in this region was initiated by eruptions from the Tatarinov and Lomonosov volcanoes. After the eruptions, the Fuss and Chikurachki volcanoes started their explosive activities at ca. 7.5 ka BP, soon after the deposition of widespread tephra from the Kurile Lake caldera in southern Kamchatka. Compared with Fuss located on the back-arc side, Chikurachki has frequent, repeated explosive and voluminous eruptions. Whole-rock compositions of the rocks of the CTL volcanic chain and Fuss are classified into medium-K and high-K groups, respectively. These suggest that magma systems beneath the CTL volcanic chain and Fuss differ from each other and have been independently constructed. The rocks of the Chikurachki volcano are basalt-basaltic andesite and have gradually evolved their chemical compositions; when graphed on a SiO2-oxide diagram, these form smooth trends from mafic to more felsic. This suggests that the magma system evolved mainly by fractional crystallization. In contrast, matrix glass chemistries for Fuss pumices are distinct for each eruption and show different K2O levels on a SiO2-K2O diagram. This implies that the magma system of Fuss has been frequently replaced. Both volcanoes have been active under the same subduction system. However, the Chikurachki volcano will continue eruptive activity under a stable magma system with a higher magma discharge rate, whereas Fuss may continue construction with an intermittent supply of distinct, small magma batches.
Hoff U., Dirksen O., Dirksen V., Herzschuh U., Hubberten H.-W., Meyer H., van den Bogaard C., Diekmann B. Late Holocene diatom assemblages in a lake-sediment core from Central Kamchatka, Russia // Journal of Paleolimnology. 2012. Vol. 47. Vol. 4. P. 549-560. doi: 10.1007/s10933-012-9580-y.
   Аннотация
Fossil diatom assemblages in a sediment core from a small lake in Central Kamchatka (Russia) were used to reconstruct palaeoenvironmental conditions of the late Holocene. The waterbody may be a kettle lake that formed on a moraine of the Two-Yurts Lake Valley, located on the eastern slope of the Central Kamchatka Mountain Chain. At present, it is a seepage lake with no surficial outflow. Fossil diatom assemblages show an almost constant ratio between planktonic and periphytic forms throughout the record. Downcore variations in the relative abundances of diatom species enabled division of the core into four diatom assemblage zones, mainly related to changes in abundances of Aulacoseira subarctica, Stephanodiscus minutulus, and Discostella pseudostelligera and several benthic species. Associated variations in the composition and content of organic matter are consistent with the diatom stratigraphy. The oldest recovered sediments date to about 3220 BC. They lie below a sedimentation hiatus and likely include reworked deposits from nearby Two-Yurts Lake. The initial lake stage between 870 and 400 BC was characterized by acidic shallow-water conditions. Between 400 BC and AD 1400, lacustrine conditions were established, with highest contributions from planktonic diatoms. The interval between AD 1400 and 1900 might reflect summer cooling during the Little Ice Age, indicated by diatoms that prefer strong turbulence, nutrient recycling and cooler summer conditions. The timing of palaeolimnological changes generally fits the pattern of neoglacial cooling during the late Holocene on Kamchatka and in the neighbouring Sea of Okhotsk, mainly driven by the prevailing modes of regional atmospheric circulation.
Horváth Á, Carr J.L., Girina O.A., Wu D.L., Bril A.A., Mazurov A.A., Melnikov D.V., Hoshyaripour G.A., Buehler S.A. Geometric estimation of volcanic eruption column height from GOES-R near-limb imagery – Part 1: Methodology // Atmospheric Chemistry and Physics. 2021. Vol. 21. Vol. 16. P. 12189-12206. https://doi.org/10.5194/acp-21-12189-2021, 2021.
   Аннотация
A geometric technique is introduced to estimate the height of volcanic eruption columns using the generally discarded near-limb portion of geostationary imagery. Such oblique observations facilitate a height-by-angle estimation method by offering close-to-orthogonal side views of eruption columns protruding from the Earth ellipsoid. Coverage is restricted to daytime point estimates in the immediate vicinity of the vent, which nevertheless can provide complementary constraints on source conditions for the modeling of near-field plume evolution. The technique is best suited to strong eruption columns with minimal tilting in the radial direction. For weak eruptions with severely bent plumes or eruptions with expanded umbrella clouds the radial tilt/expansion has to be corrected for either visually or using ancillary wind profiles. Validation on a large set of mountain peaks indicates a typical height uncertainty of ±500 m for near-vertical eruption columns, which compares favorably with the accuracy of the common temperature method.
Horváth Á, Girina O.A., Carr J.L., Wu D.L., Bril A.A., Mazurov A.A., Melnikov D.V., Hoshyaripour G.A., Buehler S.A. Geometric estimation of volcanic eruption column height from GOES-R near-limb imagery – Part 2: Case studies // Atmospheric Chemistry and Physics. 2021. Vol. 21. Vol. 16. P. 12207-12226. https://doi.org/10.5194/acp-21-12207-2021.
   Аннотация
In a companion paper (Horváth et al., 2021), we introduced a new technique to estimate volcanic eruption column height from extremely oblique near-limb geostationary views. The current paper demonstrates and validates the technique in a number of recent eruptions, ranging from ones with weak columnar plumes to subplinian events with massive umbrella clouds and overshooting tops that penetrate the stratosphere. Due to its purely geometric nature, the new method is shown to be unaffected by the limitations of the traditional brightness temperature method, such as height underestimation in subpixel and semitransparent plumes, ambiguous solutions near the tropopause temperature inversion, or the lack of solutions in undercooled plumes. The side view height estimates were in good agreement with plume heights derived from ground-based video and satellite stereo observations, suggesting they can be a useful complement to established techniques.