Group by:  
Jump to:
Records: 2335
Bergal-Kuvikas Olga, Bindeman Ilya, Skorkina Anna, Khubaeva Olga Origin of monogenetic volcanoes in Malko-Petropavlovsk zone of the transverse dislocation (Kamchatka): geological setting, geophysical parameters and geochemical data // Abstract volume of the 8th International Maar Conference. Petropavlovsk-Kamchatsky: IVS FEB RAS. 2020. P. 37-38.
Girina O.A., Gorbach N.V., Davydova V.O., Melnikov D.V., Manevich T.M, Manevich A.G., Demyanchuk Yu.V. The 15 March 2019 Bezymianny Volcano Explosive Eruption and Its Products // Journal of Volcanology and Seismology. 2020. Vol. 14. № 6. P. 394-409.    Annotation
Bezymianny Volcano is one of the most active volcanoes in Kamchatka and in the world. This paper describes the preparation, behavior, products, dynamics, and the geological effect of the March 15, 2019 explosive eruption of the volcano, which was predicted 6.5 h before it began. The sequence of eruptive events was analyzed using data provided by video and satellite-based monitoring of the volcano; the quantitative characteristics for the distribution of pyroclastic deposits were obtained in the information system “Remote Monitoring of Activity of Volcanoes in Kamchatka and the Kurile Islands”. The explosions lifted ash to heights of 15 km above sea level (up to 12 km above the volcano), the eruptive cloud was moving northeastward and east from the volcano, the main ashfall area was 210 400 km2, including 15 000 km2 on land. Apart from tephra, the eruption produced pyroclastic flows and pyroclastic surges covering an area of 30 km2. The total volume of explosive products is estimated as 0.1–0.2 km3. The eruptive rocks are calc-alkaline moderate-K basaltic andesites (SiO2 = 54.84–56.29 wt %), they are the most mafic among all rocks of the current Bezymianny eruption cycle.
Girina O.A., Ladygin V.М. Monogenetic cones of Klyuchevskaya group of volcanoes (Kamchatka, Russia) // Abstract volume of the 8th International Maar Conference. Petropavlovsk-Kamchatsky: IVS FEB RAS. 2020. P. 56-57.
Girina O.A., Melnikov D.V., Manevich A.G., Nuzhdaev A.A., Petrova E.G. The 2019 Activity of Kamchatka and Kurile Islands Volcanoes and Danger to Aviation (oral report) // JpGU - AGU Joint Meeting 2020: Virtual. 12-16 July, 2020, Japan, Tokyo. 2020.
Girina O.A., Melnikov D.V., Manevich A.G., Nuzhdaev A.A., Petrova E.G. The 2019 Activity of Kamchatka and Kurile Islands Volcanoes and Danger to Aviation // Japan Geoscience Union Meeting 2020. Japan, Chiba: JpGU. 2020. № HDS10-P01.
Kopylova G.N., Boldina S.V. Groundwater Pressure Changes Due to Magmatic Activation: Case Study of The E-1 Well, Kamchatka Peninsula, Russia // Geothermal Volcanology Workshop 2020. September 03-09, 2020, Petropavlovsk-Kamchatsky, Institute of Volcanology and Seismology. 2020.
Korolev S.P., Urmanov I.P., Kamaev A., Girina O.A. Parametric Methods and Algorithms of Volcano Image Processing / Software Engineering Perspectives in Intelligent Systems. Advances in Intelligent Systems and Computing. Cham: Springer. 2020. Vol. 1295. P. 253-263.    Annotation
A key problem of any video volcano surveillance network is an inconsistent quality and information value of the images obtained. To timely analyze the incoming data, they should be pre-filtered. Additionally, due to the continuous network operation and low shooting intervals, an operative visual analysis of the shots stream is quite difficult and requires the application of various computer algorithms. The article considers the parametric algorithms of image analysis developed by the authors for processing the shots of the volcanoes of Kamchatka. They allow automatically filtering the image flow generated by the surveillance network, highlighting those significant shots that will be further analyzed by volcanologists. A retrospective processing of the full image archive with the methods suggested helps to get a data set, labeled with different classes, for future neural network training.
Melnik O., Lyakhovsky V., Shapiro Nikolay M., Galina N., Bergal-Kuvikas Olga Deep long period volcanic earthquakes generated by degassing of volatile-rich basaltic magmas // Nature Communication. 2020. Vol. 11. № 3918. doi: 10.1038/s41467-020-17759-4.    Annotation
Deep long-period (DLP) earthquakes observed beneath active volcanoes are sometimes considered as precursors to eruptions. Their origin remains, however, unclear. Here, we present a possible DLP generating mechanism related to the rapid growth of gas bubbles in response to the slow decompression of over-saturated magma. For certain values of the gas and bubble content, the elastic deformation of surrounding rocks forced by the expanding bubbly magma can be fast enough to generate seismic waves. We show that amplitudes and frequencies of DLP earthquakes observed beneath the Klyuchevskoy volcano (Kamchatka, Russia) can be predicted by our model when considering pressure changes of ~107 Pa in a volume of ~103–104 m3 and realistic magma compositions. Our results show importance of the deep degassing in the generation of volcanic seismicity and suggest that the DLP swarms beneath active volcanoes might be related to the pulses of volatile-rich basaltic magmas rising from the mantle.
Ozerov A.Yu., Girina O.A., Zharinov N.A., Belousov A.B., Demyanchuk Yu.V. Eruptions in the Northern Group of Volcanoes, in Kamchatka, during the Early 21st Century // Journal of Volcanology and Seismology. 2020. Vol. 14. P. 1-17.    Annotation
The early 21st century saw increased eruption activity of major volcanoes in the Northern Group of Kamchatka, namely, Sheveluch, Klyuchevskoy, Bezymianny, and the Tolbachik Fissure Zone. The growth of an extrusive dome on Sheveluch andesitic volcano has occurred, with the dome reaching a height of 600 m after 38 years of nearly uninterrupted eruption activity. An 8-year period of relative quiet was followed by ten summit eruptions and two lateral vent openings on the Klyuchevskoy basaltic volcano. Explosive–effusive eruptions were observed nearly every year on the Bezymianny andesitic volcano. A 36-year quiet period gave way to a new eruption in the Tolbachik regional fissure zone.
Арсанова Г.И. Вулкан как глубинная геологическая структура (механизмы возникновения и стока магм) // The scientific heritage. 2020. Т. 1. № 50. С. 16-24.    Annotation
Впервые объясняются причины рождения вулканов в недрах планеты и механизм выброса магмы на поверхность. Итоговый вывод получен как результат интеграции знаний нескольких наук. Их синтез позволил определить ВУЛКАН как самоорганизующуюся пространственно-временную вихревую диссипативную структуру, форма которой создается и переносится в виде волн, а по нити (керну) структуры идет сток магмы. Такие структуры сами рождаются на подходящей хаотической среде; соответствующая среда возникает в результате высокого давления, ломающего структуры молекул, и этим создающего множество различных хаотично движущихся частиц. Необходимое давление, по-видимому, достигается на уровне астеносферы, где и локализуются «корни» вулканов.

For the first time the causes of the birth of volcanoes in the depths of the planet and the mechanism of magma ejection to the surface are explained. The final conclusion was obtained as a result of the integration of knowledge of several sciences. Their synthesis allowed to define VOLCANO as a self-organizing space-time vortex dissipative structure, the form of which is created and carried in the form of waves, and through the thread (core) of the structure is the drain of magma. Such structures are itself born in a suitable chaotic environment; appropriate environment arises as a consequence of high pressure, which breaks down the structures of molecules and this creates a lot of different moving particles. The pressure necessary for this, apparently, is reached at the asthenosphere level, where the "roots" of volcanoes are localized.

Recommended browsers for viewing this site: Google Chrome, Mozilla Firefox, Opera, Yandex. Using another browser may cause incorrect browsing of webpages.
Terms of use of IVS FEB RAS Geoportal materials and services

Copyright © Institute of Volcanology and Seismology FEB RAS, 2010-2021. Terms of use.
No part of the Geoportal and/or Geoportal content can be reproduced in any form whether electronically or otherwise without the prior consent of the copyright holder. You must provide a link to the Geoportal from your own website.