Main Bibliography
 
 Bibliography
Volcano:

 
Records: 2144
Pages:  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
Edwards Benjamin R., Belousov Alexander, Belousova Marina, Volynets Anna Introduction to the 2012–2013 Tolbachik eruption special issue // Journal of Volcanology and Geothermal Research. 2015. V. 307. P. 1 - 2. doi: 10.1016/j.jvolgeores.2015.12.001.
Egorova I.A. Age and Paleogeography of Formation of Volcano-Sedimentary Deposits in the Uzon-Geizernaya Caldera Depression, Kamchatka (According to Palynological Data) // Volcanology and Seismology. 1993. V. 15. № 2. P. 157-176.    Annotation
Based on thepalynological studies, the age dismembering is made of volcanogenic-sedimentary deposits in the Uzon-Geysernaya Caldera Depression. The paleogeographical setting of the time of sedimentation is described. The age of deposits was established to be Late Pleitocene-Holocene. The dating was made of the main events of the post-caldera volcanic activity in the Uzon Caldera.
Erlich E.N., Melekestsev I.V. Evolution of Quaternary Volcanism and Tectonics in the Western Part of the Pacific Ring // Pacific Geology. 1972. № 4. P. 1-22.
Erlich E.N., Melekestsev I.V., Braitseva O.A. Evolution of Recent Volcanism // Bulletin of Volcanology. 1979. V. 42. № 1-4. P. 93-112. doi: 10.1007/BF02597042.
Erman A. Reise um die Erde durch Nord-Asien und die beiden Oceane in den Jahren 1828, 1829 und 1830. 1848. V. 3. 591 p.
Falvard S., Paris R., Belousova M., Belousov A., Giachetti T., Cuven S. Scenario of the 1996 volcanic tsunamis in Karymskoye Lake, Kamchatka, inferred from X-ray tomography of heavy minerals in tsunami deposits // Marine Geology. 2018. № 396. P. 160-170.
Fazlullin S.M., Ushakov S.V., Shuvalov R.A., Aoki M., Nikolaeva A.G., Lupikina E.G. The 1996 subaqueous eruption at Academii Nauk volcano (Kamchatka) and its effects on Karymsky lake // Journal of Volcanology and Geothermal Research. 2000. V. 97. № 1–4. P. 181 - 193. doi: 10.1016/S0377-0273(99)00160-2.    Annotation
A subaqueous eruption in Karymsky lake in the Academii Nauk caldera dramatically changed its water column structure, water chemistry and biological system in less than 24 h, sending major floodwaves down the discharging river and eruption plumes with ash and gases high into the atmosphere. Prior to the eruption, the lake had a pH of about 7, was dominated by bicarbonate, and well stocked with fish, but turned in early 1996 into a stratified, initially steaming waterbody, dominated by sulfate with high Na and K levels, and devoid of fish. Blockage of the outlet led to rising waterlevels, followed by dam breakage and catastrophic water discharge. The total energy input during the eruption is estimated at about 1016 J. The stable isotope composition of the lake water remained dominated by the meteoric meltwaters after the eruption.
Fedotov S.A. Crustal Deformations Related to the Formation of New Tolbachik Volcanoes in 1975-1976, Kamchatka // Bulletin Volcanologique. 1980. V. 43. № 1. P. 35-46.    Annotation
The paper discusses the results of geodetic investigations performed in the region of the large 1975-1976 Tolbachik fissure eruption in Kamchatka. Using data from repeated triangu-lation and trigonometric levelings, horizontal and vertical displacements have been detected in an area of 3,500 km2. Two zones have been recognized: the tension and uplift zone that is probably due to magma intrusion from depths to the surface along the line of new cones and the extensive compensative subsidence zone located at a distance of 20-50 km from the nearest newly-formed cones.??Measurements made with small distance measuring device showed the dynamics of feeding basalt dykes intrusion and made it possible to determine their width (a little greater than 1 m) and magma and gas overpressure (50-250 bar). Data have been obtained on dimensions and growth of cones and on vertical ground deformation in the area of new cones during and after the eruption.??
Fedotov S.A. Enterance magma temperature, formation, dimensions and evolution of magma chambers of volcanoes // Arc Volcanism: Physics and Tectonics. Proceedings of a 1981 IAVCEI Symposium, Arc Volcanism, August-September, 1981, Tokyo and Hakone. Tokyo: Terra Scientific Publishing Co. 1981. P. 90
Fedotov S.A. Eruption Forecasting of Volcanoes in Kamchatka and Kurile Islands // Kagoshima International Conference on Volcanoes: Proceedings of the International Conference on Volcanoes, Japan, Kagoshima, 19-23 July 1988. Kagoshima: Kagoshima Prefectural Government. 1988. P. 172-178.





 

Recommended browsers for viewing this site: Google Chrome, Mozilla Firefox, Opera, Yandex. Using another browser may cause incorrect browsing of webpages.
 
Terms of use of IVS FEB RAS Geoportal materials and services

Copyright © Institute of Volcanology and Seismology FEB RAS, 2010-2019. Terms of use.
No part of the Geoportal and/or Geoportal content can be reproduced in any form whether electronically or otherwise without the prior consent of the copyright holder. You must provide a link to the Geoportal geoportal.kscnet.ru from your own website.
 
©Design: roman@kscnet.ru