Main BibliographyПо дате публикаций
 
 Bibliography
Volcano:

 
Jump to:
Records: 2145
Pages:  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
 1998
Muravyev Y.D., Fedotov S.A., Budnikov V.A., Ozerov A.Yu., Maguskin M.A., Dvigalo V.N., Andreev V.I., Ivanov V.V., Kartasheva L.A., Markov I.A. Activity in the Karymsky Center in 1996: Summit Eruption at Karymsky and Phreatomagmatic Eruption in the Akademii Nauk Caldera // Volcanology and Seismology. 1998. V. 19. № 5. P. 567-604.    Annotation
Data are presented from studies of volcanoes in the Karymsky long-living volcanic center, Kamchatka in 1996. We examine the dynamics and rock composition for eruptions that started simultaneously on Karymsky Volcano and in the Akademia Nauk caldera. The effusive-explosive eruption of Karymsky Volcano was resumed after a 14-year repose period, producing about 30 million tons of andesite-dacite discharges through the summit vent. Long-continued eruptive activity of that volcano is supposed to go on during the near future. Simultaneously with this activity, typical of Karymsky Volcano, a subaquaceous explosive eruption was observed in the lake that occupies the Akademia Nauk caldera 6 km south of the volcano for the first time in Kamchatka during the historical period. An edifice arose in the northern part of Lake Karymsky during 18 hours of this eruption consisting of basaltic and basaltic andesite pyroclastic material surrounding a crater of diameter 650 m. The amount of erupted pyroclastic material is estimated as 0.04 km3, the total weight being over 70 million tons. A discussion is provided of the impact of these eruptions on the environment; we describe renewed hydrothermal activity and the formation of a new group of hot springs in the Akademia Nauk caldera, and estimate the possibility of breakthrough floods from Lake Karymsky etc.

Представлены материалы исследований деятельности вулканов Карымского долгоживущего вулканического центра на Камчатке в 1996 г. Рассмотрены особенности динамики и вещественный состав пород одновременно начавшихся извержений вулкана Карымский и в кальдере Академии Наук. Эффузивно-эксплозивное извержение Карымского вулкана возобновилось после 14-летнего периода покоя и в течение года поставило через вершинный кратер -30 млн.т вещества андезитодацитового состава. Предполагается длительная эруптивная активность этого вулкана в ближайшие годы. Одновременно с типичной для Карымского вулкана активностью в 6 км южнее впервые на Камчатке в историческое время наблюдалось субаквальное эксплозивное извержение в озере, занимающем кальдеру Академии Наук. За 18ч извержения в северной части Карымского озера выросла постройка из пирокластического материала базальтового, андезитобазальтового состава с кратером диаметром 650 м. Объем извергнутого пирокластического материала оценивается в 0.04 км3, общий вес >70 млн.т. Обсуждены последствия извержений для окружающей среды, описаны оживление гидротермальной деятельности и образование новой группы горячих источников в кальдере Академии Наук, сделаны оценки прорывных паводков из Карымского озера и т.п.
Ponomareva V.V., Pevzner M.M., Melekestsev I.V. Large debris avalanches and associated eruptions in the Holocene eruptive history of Shiveluch Volcano, Kamchatka, Russia // Bulletin of Volcanology. 1998. V. 59. № 7. P. 490-505. doi: 10.1007/s004450050206.    Annotation
Shiveluch Volcano, located in the Central Kamchatka Depression, has experienced multiple flank failures during its lifetime, most recently in 1964. The overlapping deposits of at least 13 large Holocene debris avalanches cover an area of approximately 200 km2 of the southern sector of the volcano. Deposits of two debris avalanches associated with flank extrusive domes are, in addition, located on its western slope. The maximum travel distance of individual Holocene avalanches exceeds 20 km, and their volumes reach ∼3 km3. The deposits of most avalanches typically have a hummocky surface, are poorly sorted and graded, and contain angular heterogeneous rock fragments of various sizes surrounded by coarse to fine matrix. The deposits differ in color, indicating different sources on the edifice. Tephrochronological and radiocarbon dating of the avalanches shows that the first large Holocene avalanches were emplaced approximately 4530–4350 BC. From ∼2490 BC at least 13 avalanches occurred after intervals of 30–900 years. Six large avalanches were emplaced between 120 and 970 AD, with recurrence intervals of 30–340 years. All the debris avalanches were followed by eruptions that produced various types of pyroclastic deposits. Features of some surge deposits suggest that they might have originated as a result of directed blasts triggered by rockslides. Most avalanche deposits are composed of fresh andesitic rocks of extrusive domes, so the avalanches might have resulted from the high magma supply rate and the repetitive formation of the domes. No trace of the 1854 summit failure mentioned in historical records has been found beyond 8 km from the crater; perhaps witnesses exaggerated or misinterpreted the events.
Авдейко Г.П., Пилипенко Г.Ф., Палуева А.А., Напылова О.А. Геотектонические позиции современных гидротермальных проявлений Камчатки // Вулканология и сейсмология. 1998. № 6. С. 85-99.    Annotation
Большинство гидротермальных проявлений и все высокотемпературные гидротермальные системы локализованы в пределах трех вулканических поясов (Восточно-Камчатского, Южно-Камчатского и Срединного хребта), связанных с зонами субдукции. Поддвиг в зоне субдукции под Срединным хребтом в настоящее время прекратился. Помимо геологических данных это подтверждается тем, что вынос тепла гидротермами Срединного хребта на порядок ниже, чем на Восточной и Южной Камчатке. Пространственное распределение гидротерм почти идентично во всех поясах. При ширине вулканических поясов и зон гидротермальной активности 90-100 км более 95% выносимого гидротермами тепла приурочено к зонам шириной -45 км, примыкающим к вулканическим фронтам. Вулканические фронты дуг являются четкими границами, за которыми нынос тепла резко обрывается. Типичен дискретный характер выноса тепла вдоль вулканических поясов с характерным расстоянием 70-100 км между пиковыми значениями тепловой разгрузки. Количественная оценка вклада возможных источников тепла и воды в формирование гидротермальных систем показала, что единственный реальный источник тепла - близповерхностные магматические очаги. Рассмотрен сценарий возможного тепломассопереноса, приводящий к формированию гидротермальных систем и связанных с ними рудопроявлений.

Most of the hot .springs and all high-temperature hydrothermal systems are located within the three volcanic belts: East Kamchatka, South Kamchatka and Srcdinny Ridge connected with the zones of subduction. At the present time subduction beneath the Sredinny Ridge has stopped and the Central Kamchatka depression is now a relict of the continental slope of deep-sea trench. This is supported not only by the geological data but also by the fact that heat release by hot springs in the Sredinny Ridge is an order of magnitude lower then within East and South Kamchatka. Distribution of the hot springs is similar in all three belts. At 90-100 km width of the volcanic belts and of zones of the hydrothermal activity over 95% of heat is released by the sources located within the 45-km wide near-frontal zones. Voicanic fronts of the arcs are the clear boundaries beyond which heat release discontinues sharply. The descreate heat release is observed along the volcanic belts at the typical distances of 70-100 km between the maxim of heat release. Quantitative estimation of the probable heat and water contribution into the hydrothermal system formation showed that the only real heal source are the near surface magmatic chambers. Scenario of the probable heat and mass transfer leading to the formation of the hydrothermal systems and connected with them ore deposits has been considered.
Авдейко Г.П., Пилипенко Г.Ф., Хворостов В.П. Тектонические позиции и условия образования современных гидротермальных систем и Au-Ag рудопроявлений Камчатки // Минерало-рудообразование в вулканогидротермальных системах островных дуг (Камчатка-Курильские острова-Японские острова): Материалы Российско-японского полевого семинара, г. Петропавловск-Камчатский, Россия, 25 июля-2 августа 1998 г. 1998. С. 15-17.
Белоусов А.Б., Белоусова М.Г. Извержения вулкана Безымянный // Природа. 1998. Т. 3. С. 35-38.
Белоусов А.Б., Белоусова М.Г. Отложения и последовательность событий извержения вулкана Безымянный 30 марта 1956 г. // Вулканология и сейсмология. 1998. № 1. С. 25-40.    Annotation
Детальное изучение отложений в сопоставлении с описаниями извержения показало, что 30 марта 1956 г. на вулкане Безымянный (Центральная Камчатка) произошел обрушение - оползень восточного склона вулканической постройки объемом 0,5 км3. Устойчивость вулкана была нарушена внедрением порции магматического расплава в его постройку и виде купола и криптокупола на докульминационной стадии извержения. Обвал трансформировался в холодную (< 100°С) обломочную лавину, скорость которой превышала 60 м/с на расстоянии 10 км от вулкана. Обломочная лавина образовала три ветви, вложенные в речные долины. Максимальный путь (22 км) прошла Центральная ветвь. В процессе распространения обломочная лавина сдирала и толкала перед собой вал материала подножья вулкана (снег, почву, аллювий, растительность), который образовал протяженные грязевые потоки. За обрушением последовал кастрофический направленный взрыв, вызванный декомпрессией купола и криптокупола, и произошло извержение пирокластических потоков.

A detailed reexamination of the deposits and comparison with the descriptions of the eruption revealed that on March 30, 1956, a collapse and a landslide 0.5 km3 in volume took place on the eastern slope of Bezymyannyi (Central Kamchatka). After a series of explosions, an old dome was slowly uplifted by rising magma, and a cryptodome intruded the eastern flank prior to a cataclysmic explosion. A rockslide changed to a cold (< 100°C) debris avalanche which rushed down at a speed of more than 60 m/s and covered a distance of 10 km from the volcano. The avalanche split into three branches that flowed along the river valleys. The central flow covered the largest distance (22 km). The avalanche stripped and pushed the material at the volcano's foot (snow, soil, alluvium, and vegetation), which produced long mud flows. The landslide unroofed the cryptodome and triggering a devastating lateral blast followed by the eruption of pyroclastic flows.
Белоусов А.Б., Фирстов П.П., Жданова Е.Ю. Извержения вулкана Безымянный в 1993-1995 гг. // Вулканология и сейсмология. 1998. № 3. С. 60-70.
Богатиков О.А., Мелекесцев И.В., Гурбанов А.Г., Катов Д.М., Пурига А.И. Катастрофические палеолахары вулкана Эльбрус (Северный Кавказ) // Доклады Академии наук. 1998. Т. 362. № 4. С. 518-521.
Богатиков О.А., Мелекесцев И.В., Гурбанов А.Г., Катов Д.М., Пурига А.И. Эльбрусская кальдера (Северный Кавказ) // Доклады Академии наук. 1998. Т. 363. № 4. С. 515-517.
Богатиков О.А., Мелекесцев И.В., Гурбанов А.Г., Сулержицкий Л.Д., Катов Д.М., Пурига А.И. Радиоуглеродное датирование голоценовых извержений вулкана Эльбрус (Северный Кавказ, Россия) // Доклады Академии наук. 1998. Т. 363. № 2. С. 219-221.





 

Recommended browsers for viewing this site: Google Chrome, Mozilla Firefox, Opera, Yandex. Using another browser may cause incorrect browsing of webpages.
 
Terms of use of IVS FEB RAS Geoportal materials and services

Copyright © Institute of Volcanology and Seismology FEB RAS, 2010-2019. Terms of use.
No part of the Geoportal and/or Geoportal content can be reproduced in any form whether electronically or otherwise without the prior consent of the copyright holder. You must provide a link to the Geoportal geoportal.kscnet.ru from your own website.
 
©Design: roman@kscnet.ru