Библиография
Вулкан:
Группировать:  
Выбрать:
Записей: 2735
 2004
Neal C.A., McGimsey R.G., Girina O.A. 2002 Volcanic Activity in Alaska and Kamchatka: Summary of Events and Response of the Alaska Volcano Observatory Open-File Report 2004-1058. 2004. 55 p.
Ozerov A.Yu. Evolution of basaltic melts within the feeding system of the Klyuchevskoy volcano // 32nd International Geological Congress. Florence, Italy. 2004, Abstracts. 2004. Vol. Part 1. P. 407
Pevzner M.M. New data on Holocene monogenetic volcanism of the Northern Kamchatka: ages and space distribution // Abstracts. 4rd Biennial Workshop on Subduction Processes emphasizing the Kurile-Kamchatka-Aleutian Arcs (JKASP-4). Linkages among tectonics, seismicity, magma genesis, and eruption in volcanic arcs. August 21-27, 2004. Petropavlovsk-Kamchatsky: Institute of Volcanology and Seismology FEB RAS. 2004. С. 72-76.
Pevzner M.M. The First Geological Data on the Chronology of Holocene Eruptive Activity in the Ichinskii Volcano (Sredinnyi Ridge, Kamchatka) // Doklady Earth Sciences. 2004. Vol. 395A. № 3. P. 335-337.
Ponomareva V.V., Kyle P.R., Melekestsev I.V., Rinkleff P.G., Dirksen O.V., Sulerzhitsky L.D., Zaretskaia N.E., Rourke R. The 7600 (14C) year BP Kurile Lake caldera-forming eruption, Kamchatka, Russia: stratigraphy and field relationships // Journal of Volcanology and Geothermal Research. 2004. Vol. 136. № 3-4. P. 199-222. doi:10.1016/j.jvolgeores.2004.05.013.
   Аннотация
The 7600 14C-year-old Kurile Lake caldera-forming eruption (KO) in southern Kamchatka, Russia, produced a 7-km-wide caldera now mostly filled by the Kurile Lake. The KO eruption has a conservatively estimated tephra volume of 140–170 km3 making it the largest Holocene eruption in the Kurile–Kamchatka volcanic arc and ranking it among the Earth’s largest Holocene explosive eruptions. The eruptive sequence consists of three main units: (I) initial phreatoplinian deposits; (II) plinian fall deposits, and (III) a voluminous and extensive ignimbrite sheet and accompanying surge beds and co-ignimbrite fallout. The KO fall tephra was dispersed over an area of >3 million km2, mostly in a northwest direction. It is a valuable stratigraphic marker for southern Kamchatka, the Sea of Okhotsk, and a large part of the Asia mainland, where it has been identified as a f6 to 0.1 cm thick layer in terrestrial and lake sediments, 1000–1700 km from source. The ignimbrite, which constitutes a significant volume of the KO deposits, extends to the Sea of Okhotsk and the Pacific Ocean on either side of the peninsula, a distance of over 50 km from source. Fine co-ignimbrite ash was likely formed when the ignimbrite entered the sea and could account for the wide dispersal of the KO fall unit. Individual pumice clasts from the fall and surge deposits range from dacite to rhyolite, whereas pumice and scoria clasts in the ignimbrite range from basaltic andesite to rhyolite. Ignimbrite exposed west and south of the caldera is dominantly rhyolite, whereas north, east and southeast of the caldera it has a strong vertical compositional zonation from rhyolite at the base to basaltic andesite in the middle, and back to rhyolite at the top. Following the KO eruption, Iliinsky volcano formed within the northeastern part of the caldera producing basalt to dacite lavas and pyroclastic rocks compositionally related to the KO erupted products. Other post-caldera features include several extrusive domes, which form islands in Kurile Lake, submerged cinder cones and the huge silicic extrusive massif of Dikii Greben’ volcano.
Puzankov M.Yu., Bazanova L.I., Maximov A.P., Moskalyova S.V. The initial plinian basic andesite eruptions of the young cone, Avachinsky volcano (Kamchatka) // IV International Biennial Workshop on Subduction Processes emphasizing the Japan-Kurile-Kamchatka-Aleutian Arcs. August 21-27, 2004, Petropavlovsk-Kamchatsky. 2004. P. 158-160.
Ramsey Michael, Dehn Jonathan Spaceborne observations of the 2000 Bezymianny, Kamchatka eruption: the integration of high-resolution ASTER data into near real-time monitoring using AVHRR // Journal of Volcanology and Geothermal Research. 2004. Vol. 135. № 1-2. P. 127-146. doi:10.1016/j.jvolgeores.2003.12.014.
   Аннотация
Since its launch in December 1999, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument has been observing over 1300 of the world's volcanoes during the day and night and at different times of the year. At the onset of an eruption, the temporal frequency of these regularly scheduled observations can be increased to as little as 1–3 days at higher latitudes. However, even this repeat time is not sufficient for near real-time monitoring, which is on the order of minutes to hours using poorer spatial resolution (>1 km/pixel) instruments. The eruption of Bezymianny Volcano (Kamchatkan Peninsula, Russia) in March 2000 was detected by the Alaska Volcano Observatory (AVO) and also initiated an increased observation frequency for ASTER. A complete framework of the eruptive cycle from April 2000 to January 2001 was established, with the Advanced Very High Resolution Radiometer (AVHRR) data used to monitor the large eruptions and produce the average yearly background state for the volcano. Twenty, nearly cloud-free ASTER scenes (2 days and 18 nights) show large thermal anomalies covering tens to hundreds of pixels and reveal both the actively erupting and restive (background) state of the volcano. ASTER short-wave infrared (SWIR) and thermal infrared (TIR) data were also used to validate the recovered kinetic temperatures from the larger AVHRR pixels, as well as map the volcanic products and monitor the thermal features on the summit dome and surrounding small pyroclastic flows. These anomalies increase to greater than 90 °C prior to a larger eruption sequence in October 2000. In addition, ASTER has the first multispectral spaceborne TIR capability, which allowed for the modeling of micrometer-scale surface roughness (vesicularity) on the active lava dome. Where coupled with ongoing operational monitoring programs like those at AVO, ASTER data become extremely useful in discrimination of small surface targets in addition to providing enhanced volcanic mapping capabilities.
Бабаянц П.С., Блох Ю.И., Трусов А.А. Возможности структурно-вещественного картирования по данным магниторазведки и гравиразведки в пакете программ СИГМА-3D // Геофизический вестник. 2004. № 3. С. 11-15.
Базанова Л.И., Брайцева О.А., Мелекесцев И.В., Пузанков М.Ю. Оценка вулканической опасности от Авачинского вулкана, Камчатка, Россия // Взаимосвязь между тектоникой, сейсмичностью, магмообразованием и извержениями вулканов в вулканических дугах. Материалы IV Международного совещания по процессам в зонах субдукции Японской, Курило-Камчатской и Алеутской островных дуг. Петропавловск-Камчатский: ИВиС ДВО РАН. 2004. С. 51-52.
Базанова Л.И., Брайцева О.А., Мелекесцев И.В., Сулержицкий Л.Д. Катастрофические извержения Авачинского вулкана (Камчатка) в голоцене: хронология, динамика, геолого-геоморфологический и экологический эффекты, долгосрочный прогноз // Вулканология и сейсмология. 2004. № 6. С. 15-20.
   Аннотация
В голоценовой эруптивной истории Авачинского вулкана выделены пять крупнейших эксплозивных извержений с объемом пирокластики >1 км^3. Все они были плинианскими. Три из них, с андезитовым составом продуктов, произошли 7150, 5500 и 4500 14С лет назад. Два извержения (3500 и 3280 14С л.н.), поставлявшие андезибазальты, предваряли или начинали формирование Молодого конуса Авачинского вулкана. Реконструированы динамика и параметры извержений, оценены их геолого-геоморфологический и экологический эффекты, дан долгосрочный прогноз.