Библиография
Вулкан:
Группировать:  
Выбрать:
Записей: 2744
 2004
Ramsey Michael, Dehn Jonathan Spaceborne observations of the 2000 Bezymianny, Kamchatka eruption: the integration of high-resolution ASTER data into near real-time monitoring using AVHRR // Journal of Volcanology and Geothermal Research. 2004. Vol. 135. № 1-2. P. 127-146. doi:10.1016/j.jvolgeores.2003.12.014.
   Аннотация
Since its launch in December 1999, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument has been observing over 1300 of the world's volcanoes during the day and night and at different times of the year. At the onset of an eruption, the temporal frequency of these regularly scheduled observations can be increased to as little as 1–3 days at higher latitudes. However, even this repeat time is not sufficient for near real-time monitoring, which is on the order of minutes to hours using poorer spatial resolution (>1 km/pixel) instruments. The eruption of Bezymianny Volcano (Kamchatkan Peninsula, Russia) in March 2000 was detected by the Alaska Volcano Observatory (AVO) and also initiated an increased observation frequency for ASTER. A complete framework of the eruptive cycle from April 2000 to January 2001 was established, with the Advanced Very High Resolution Radiometer (AVHRR) data used to monitor the large eruptions and produce the average yearly background state for the volcano. Twenty, nearly cloud-free ASTER scenes (2 days and 18 nights) show large thermal anomalies covering tens to hundreds of pixels and reveal both the actively erupting and restive (background) state of the volcano. ASTER short-wave infrared (SWIR) and thermal infrared (TIR) data were also used to validate the recovered kinetic temperatures from the larger AVHRR pixels, as well as map the volcanic products and monitor the thermal features on the summit dome and surrounding small pyroclastic flows. These anomalies increase to greater than 90 °C prior to a larger eruption sequence in October 2000. In addition, ASTER has the first multispectral spaceborne TIR capability, which allowed for the modeling of micrometer-scale surface roughness (vesicularity) on the active lava dome. Where coupled with ongoing operational monitoring programs like those at AVO, ASTER data become extremely useful in discrimination of small surface targets in addition to providing enhanced volcanic mapping capabilities.
Бабаянц П.С., Блох Ю.И., Трусов А.А. Возможности структурно-вещественного картирования по данным магниторазведки и гравиразведки в пакете программ СИГМА-3D // Геофизический вестник. 2004. № 3. С. 11-15.
Базанова Л.И., Брайцева О.А., Мелекесцев И.В., Пузанков М.Ю. Оценка вулканической опасности от Авачинского вулкана, Камчатка, Россия // Взаимосвязь между тектоникой, сейсмичностью, магмообразованием и извержениями вулканов в вулканических дугах. Материалы IV Международного совещания по процессам в зонах субдукции Японской, Курило-Камчатской и Алеутской островных дуг. Петропавловск-Камчатский: ИВиС ДВО РАН. 2004. С. 51-52.
Базанова Л.И., Брайцева О.А., Мелекесцев И.В., Сулержицкий Л.Д. Катастрофические извержения Авачинского вулкана (Камчатка) в голоцене: хронология, динамика, геолого-геоморфологический и экологический эффекты, долгосрочный прогноз // Вулканология и сейсмология. 2004. № 6. С. 15-20.
   Аннотация
В голоценовой эруптивной истории Авачинского вулкана выделены пять крупнейших эксплозивных извержений с объемом пирокластики >1 км^3. Все они были плинианскими. Три из них, с андезитовым составом продуктов, произошли 7150, 5500 и 4500 14С лет назад. Два извержения (3500 и 3280 14С л.н.), поставлявшие андезибазальты, предваряли или начинали формирование Молодого конуса Авачинского вулкана. Реконструированы динамика и параметры извержений, оценены их геолого-геоморфологический и экологический эффекты, дан долгосрочный прогноз.
Белоусов А.Б., Белоусова М.Г. Первая попытка зондирования вулканического облака при помощи привязного аэростата // Природа. 2004. Т. 3. С. 42-46.
Богоявленская Г.Е., Наумов В.Б., Толстых М.Л., Бабанский А. Д., Хубуная С.А. Составы расплавов и условия кристаллизации андезитов вулканов Авачинский, Безымянный, Шивелуч и Карымский (по данным изучения расплавных включений) // Вулканология и сейсмология. 2004. № 6. С. 35-48.
   Аннотация
Проведены исследования расплавных включений в минералах некоторых вулканов Камчатского региона. Изучены андезибазальты и андезиты вулканов, расположенных в пределах Центральной Камчатской депрессии (вулканы Шивелуч и Безымянный), Восточно-Камчатского вулканического пояса (вулканы Авачинский и Карымский). Кроме того, изучены базальты извержения 1996 г. Карымского вулканического центра и дациты вулкана Дикий Гребень (Южная Камчатка). Использованы методы гомогенизации расплавных включений и анализ закаленных стекол этих включений с помощью электронного и ионного микрозонда. Изучено более 200 расплавных включений в минералах из 25 образцов вулканических пород. Установлено, что составы расплавных включений во вкрапленниках андезитов сильно варьируют по основности: содержания SiO2 меняются от 56 до 80 мас. %, причем с ростом кремнезема закономерно уменьшаются содержания Al2O3, FeO, MgO, CaO и увеличиваются Na2O и K2O. При этом большая часть (~80%) стекол включений имеет даци-товый и риолитовый состав. Однако составы кислых расплавов (SiO2 > 65 мас.), формирующих андезиты, отличаются от таковых, образующих дациты и риолиты. Сравнение составов расплавных включений из плагиоклазов андезитов четырех вулканов Камчатки показало значительное их различие. Основные андезиты (56-59% SiO2) вулкана Безымянный имеют большой разброс составов включений (SiO2 = 56-81%). Более кислые андезиты (SiO2 = 61%) вулкана Шивелуч обнаруживают меньший разброс составов включений (SiO2 = 67-79%). Расплавные включения в андезитах вулкана Карымский оказались более основными. Они обогащены Fe, Ti, Ca, Mg, P, Na и значительно беднее К. Возможно, расплавы, формирующие андезиты вулкана Карымского, менее дифференцированы. В изученных образцах также были обнаружены высококалиевые расплавы (К2О = 3.8-6.8 мас. %) независимо от содержаний в них SiO 2 (диапазон от 51.4 до 77.2 мас. %). По содержаниям летучих компонентов расплавы вулканов существенно различаются. Максимальные концентрации Н2О установлены в расплавах вулканов Шивелуч (от 3.0 до 7.2 мас. % при среднем значении 4.7 мас. %) и Авачинский (4.7-4.8 мас. %), более низкие концентрации - в расплавах вулканов Дикий Гребень (0.4-1.8 мас. %) и Безымянный (<1 мас. %). По флюидным включениям СО2 в плагиоклазах андезитов вулкана Шивелуч определено давление, равное 350-1600 бар, что соответствует глубине магматической камеры 1.5-6 км. Определены концентрации 17 элементов-примесей в стеклах расплавных включений в плагиоклазах четырех вулканов (Авачинский, Безымянный, Дикий Гребень, Шивелуч). По характеру распределения содержаний этих элементов изученные расплавы близки типичным магмам островных дуг.
Бондаренко В.И., Рашидов В.А. Новые данные о морфологии подводных вулканических хребтов Гидрографов и Броутона (Курильская островная дуга) // Вестник КРАУНЦ. Серия: Науки о Земле. 2004. № 4. С. 51-58.
   Аннотация
Приводятся новые данные о морфологии подводных вулканических хребтов Гидрографов и Броутона. В пределах этих хребтов выявлены четыре новых подводных вулкана, не вошедших в «Каталог подводных вулканов и гор Курильской островной дуги» – два в хребте Гидрографов и два – в хребте Броутона.
Брайцева О.А., Пономарева В.В., Мелекесцев И.В. Датирование побочных прорывов Ключевского вулкана (Камчатка) с помощью тефрохронологии // Взаимосвязь между тектоникой, сейсмичностью, магмообразованием и извержениями вулканов в вулканических дугах. Материалы IV Международного совещания по процессам в зонах субдукции Японской, Курило-Камчатской и Алеутской островных дуг. Петропавловск-Камчатский: ИВиС ДВО РАН. 2004. С. 52-53.
Геофизические исследования подводных вулканов Курильской островной дуги. 2004.
Гирина О.А. О конвективной гравитационной дифференциации пирокластики андезитовых вулканов // Материалы ежегодной конференции, посвященной Дню вулканолога, Петропавловск-Камчатский, 30-31 марта 2004 г. Петропавловск-Камчатский: "Наука – для Камчатки". 2004. С. 25-29.