Bibliography
Volcano:
Group by:  
Records: 2424
Erlich E.N., Melekestsev I.V., Braitseva O.A. Evolution of Recent Volcanism // Bulletin of Volcanology. 1979. Vol. 42. № 1-4. P. 93-112. doi: 10.1007/BF02597042.
Erman A. Reise um die Erde durch Nord-Asien und die beiden Oceane in den Jahren 1828, 1829 und 1830. Berlin: G. Reimer. 1848. Vol. 3. 591 p.
Falvard S., Paris R., Belousova M., Belousov A., Giachetti T., Cuven S. Scenario of the 1996 volcanic tsunamis in Karymskoye Lake, Kamchatka, inferred from X-ray tomography of heavy minerals in tsunami deposits // Marine Geology. 2018. № 396. P. 160-170.
Fazlullin S.M., Ushakov S.V., Shuvalov R.A., Aoki M., Nikolaeva A.G., Lupikina E.G. The 1996 subaqueous eruption at Academii Nauk volcano (Kamchatka) and its effects on Karymsky lake // Journal of Volcanology and Geothermal Research. 2000. Vol. 97. № 1–4. P. 181 - 193. doi: 10.1016/S0377-0273(99)00160-2.    Annotation
A subaqueous eruption in Karymsky lake in the Academii Nauk caldera dramatically changed its water column structure, water chemistry and biological system in less than 24 h, sending major floodwaves down the discharging river and eruption plumes with ash and gases high into the atmosphere. Prior to the eruption, the lake had a pH of about 7, was dominated by bicarbonate, and well stocked with fish, but turned in early 1996 into a stratified, initially steaming waterbody, dominated by sulfate with high Na and K levels, and devoid of fish. Blockage of the outlet led to rising waterlevels, followed by dam breakage and catastrophic water discharge. The total energy input during the eruption is estimated at about 1016 J. The stable isotope composition of the lake water remained dominated by the meteoric meltwaters after the eruption.
Fedotov S.A. Crustal Deformations Related to the Formation of New Tolbachik Volcanoes in 1975-1976, Kamchatka // Bulletin Volcanologique. 1980. Vol. 43. № 1. P. 35-46.    Annotation
The paper discusses the results of geodetic investigations performed in the region of the large 1975-1976 Tolbachik fissure eruption in Kamchatka. Using data from repeated triangu-lation and trigonometric levelings, horizontal and vertical displacements have been detected in an area of 3,500 km2. Two zones have been recognized: the tension and uplift zone that is probably due to magma intrusion from depths to the surface along the line of new cones and the extensive compensative subsidence zone located at a distance of 20-50 km from the nearest newly-formed cones.??Measurements made with small distance measuring device showed the dynamics of feeding basalt dykes intrusion and made it possible to determine their width (a little greater than 1 m) and magma and gas overpressure (50-250 bar). Data have been obtained on dimensions and growth of cones and on vertical ground deformation in the area of new cones during and after the eruption.??
Fedotov S.A. Enterance magma temperature, formation, dimensions and evolution of magma chambers of volcanoes // Arc Volcanism: Physics and Tectonics. Proceedings of a 1981 IAVCEI Symposium, Arc Volcanism, August-September, 1981, Tokyo and Hakone. Tokyo: Terra Scientific Publishing Co. 1981. P. 90
Fedotov S.A. Eruption Forecasting of Volcanoes in Kamchatka and Kurile Islands // Kagoshima International Conference on Volcanoes: Proceedings of the International Conference on Volcanoes, Japan, Kagoshima, 19-23 July 1988. Kagoshima: Kagoshima Prefectural Government. 1988. P. 172-178.
Fedotov S.A. Estimates of heat and pyroclast discharge by volcanic eruptions based upon the eruption cloud and steady plume observations // Journal of Geodynamics. 1985. Vol. 3. № 3-4. P. 275-302. doi:10.1016/0264-3707(85)90039-0.    Annotation
Fumarolic steam plumes and eruption clouds rise like convetive turbulent columns into the atmosphere. Formulae are presented here for estimating the heat power of plumes, the production rate of juvenile pyroclasts ejected during eruptions and the heat output of fumaroles. Their accuracy is tested using the well-studied examples of eruptions of Kamchatkan volcanoes.
The Briggs (1969) formula may be used in observing the ascending part of a plume in crosswinds. The best results have been obtained using the CONCAWE formula which permits estimation of the heat power in crosswinds based on the axis height of a horizontal part of a maintained plume. Three connected equations have been suggested for a stable atmosphere and calm weather conditions. The first one, which is applicable for heights ranging from 100 m to 1 km, is the formula proposed by Morton et al. (1956). This equation changes for higher layers of the troposphere (1–10 km) and stratosphere (10–55 km).
A classification scale was constructed allowing us to compare volcanic eruptions and fumarolic activity in terms of the intensity of their plumes.
The described method is useful for volcano surveillance; it helps in the study of the energetics and mechanics of volcanic and magmatic processes.
Fedotov S.A. Magma rates in feeding conduits of different volcanic centres // Journal of Volcanology and Geothermal Research. 1981. Vol. 9. № 4. P. 379-394. doi:10.1016/0377-0273(81)90045-7.    Annotation
A quasi-stationary magma flow rate in asthenospheric and crustal conduits of central type volcanoes and volcanic centres was studied analytically under the following conditions. Magma rises through cylindrical channels in which the magma temperature does not change with time, but the wall rocks are gradually heated. The magma rates were calculated for basaltic, andesitic and dacitic volcanoes using the “continental” and “oceanic” geotherms. It follows from these calculations that the magma supply rate may determine the kind of activity of a volcanic centre, being constant for large and very active volcanoes, intermittent for usual volcanic centres of island arcs or sporadic for volcamic fields, clusters of cinder cones and areal volcanism. Theoretical conclusions are consistent with observational data.
Fedotov S.A. Mechanism of magma ascent and deep feeding channels of island arc volcanoes // Bulletin Volcanologique. 1975. Vol. 39. № 2. P. 241-254. doi: 10.1007/BF02597830.    Annotation
The paper discusses the mechanism of deep magma activity beneath island are volcanoes and similar structures on the basis of data from geophysical investigations in Kamchatka; the analyses of forces that cause the ascent of magma; and related phenomena that are due to hydrostatic forces.
It is shown that the ascent of magma through the astnenosphere occurs most likely in magma columns with a diameter of approximately 700–2,000 m and with a velocity of about 0.8–3 m/year. A regular line of such columns spaced in Kamchatka at a distance of about 30 km gives rise to a chain of separate Etrge volcanoes or volcanic centers.
Ultrabasic magmas are most likely accumulated near the M discontinuity, whereas the apparent place of andesitic magma accumulation is in the earth’s crust near the boundary between the basement and sediments.



Recommended browsers for viewing this site: Google Chrome, Mozilla Firefox, Opera, Yandex. Using another browser may cause incorrect browsing of webpages.
 
Terms of use of IVS FEB RAS Geoportal materials and services

Copyright © Institute of Volcanology and Seismology FEB RAS, 2010-2021. Terms of use.
No part of the Geoportal and/or Geoportal content can be reproduced in any form whether electronically or otherwise without the prior consent of the copyright holder. You must provide a link to the Geoportal geoportal.kscnet.ru from your own website.
 
©Development&Design: roman@kscnet.ru