Главная Библиография
Вулкан: Расширенный поиск

Количество записей: 1898
Страницы:  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
Menyailov I.A., Nikitina L.P., Shapar V.N. Results of geochemical monitoring of the activity of Ebeko volcano (Kurile Islands) used for eruption prediction // Journal of Geodynamics. 1985. V. 3. № 3-4. P. 259 - 274. doi: 10.1016/0264-3707(85)90038-9.    Аннотация
The monitoring of the state of active volcanoes, carried out using different parameters, including geochemical, is very important for studies of deep processes and geodynamics. All changes which occur within the crater before eruptions reflect the magma activation and depend on the deep structure of volcano. This paper gives the results of prolonged monitoring of Ebeko volcano, located in the contact zone between the oceanic and continental plates (the Kurile Island Arc). The geochemical method has been used as the basis for eruption prediction because the increase in the activity of the Ebeko in the period from 1963 to 1967 that ended in a phreatic eruption was not preceded by seismic preparation. Investigations carried out at Ebeko volcano give evidence that change of all the chosen geochemical parameters is a prognostic indicator of a forthcoming eruption. This change depends on the type of eruption, and the deep structure and hydrodynamic regime of the volcano.
Mironov N.L., Portnyagin M.V. H2O and CO2 in parental magmas of Kliuchevskoi volcano inferred from study of melt and fluid inclusions in olivine // Russian Geology and Geophysics. 2011. V. 52. № 11. P. 1353 - 1367. doi: 10.1016/j.rgg.2011.10.007.    Аннотация
This paper reports new FTIR data on the H2O and CO2 concentrations in glasses of 26 naturally quenched and experimentally partially homogenized melt inclusions in olivine (Fo85–91) phenocrysts from rocks of the Kliuchevskoi volcano. Measured H2O concentrations in the inclusions range from 0.02 to 4 wt.%. The wide variations in the H2O content of the inclusions, which do not correlate with the host olivine composition and contents of major elements in the melts, are explained by the H2O escape from inclusions via diffusion through the host olivine during the magma eruption and the following cooling. The largest H2O loss is characteristic of inclusions from lava samples which cooled slowly after eruption. The minimal H2O loss is observed for inclusions from rapidly quenched pyroclastic rocks. Parental magmas of the Kliuchevskoi volcano are estimated to contain 3.5 wt.% H2O. The new data imply a 40 °C lower mantle temperatures than that estimated earlier for the Kliuchevskoi primary melts. The concentrations of CO2 in glasses range from <0.01 to 0.13 wt.% and do not correlate with the type of studied inclusions and their composition. The calculated pressures of melt equilibria with H2O–CO2 fluid inside the inclusions are lower than 270 MPa. They are significantly lower than a pressure of 500 MPa calculated from the density (~0.8 g/cm3) of cogenetic fluid inclusions in high-Fo olivine. The significant pressure drop inside the melt inclusions after their trapping in olivine might be due to the H2O loss and redistribution of CO2 from melt to daughter fluid phase. Compared with melt inclusions, cogenetic fluid inclusions provide independent information about the crystallization pressures of olivine and initial CO2 content in the Kliuchevskoi magma, which were estimated to be at least 500 MPa and 0.35 wt.%, respectively. The maximum CO2 concentrations in the primary Kliuchevskoi melts are estimated at 0.8–0.9 wt.%. The decompression crystallization of the Kliuchevskoi magmas starts at depths of 30–40 km and proceeds with a continuous decrease in CO2 content and an increase (up to 6–7 wt.%) and then a decrease (at <300 MPa) in H2O content in melts, which explains the origin of the whole spectrum of rocks and melt inclusions of the Kliuchevskoi volcano.
Muravyev Y.D., Fedotov S.A., Budnikov V.A., Ozerov A.Yu., Maguskin M.A., Dvigalo V.N., Andreev V.I., Ivanov V.V., Kartasheva L.A., Markov I.A. Activity in the Karymsky Center in 1996: Summit Eruption at Karymsky and Phreatomagmatic Eruption in the Akademii Nauk Caldera // Volcanology and Seismology. 1998. V. 19. № 5. P. 567-604.    Аннотация
Data are presented from studies of volcanoes in the Karymsky long-living volcanic center, Kamchatka in 1996. We examine the dynamics and rock composition for eruptions that started simultaneously on Karymsky Volcano and in the Akademia Nauk caldera. The effusive-explosive eruption of Karymsky Volcano was resumed after a 14-year repose period, producing about 30 million tons of andesite-dacite discharges through the summit vent. Long-continued eruptive activity of that volcano is supposed to go on during the near future. Simultaneously with this activity, typical of Karymsky Volcano, a subaquaceous explosive eruption was observed in the lake that occupies the Akademia Nauk caldera 6 km south of the volcano for the first time in Kamchatka during the historical period. An edifice arose in the northern part of Lake Karymsky during 18 hours of this eruption consisting of basaltic and basaltic andesite pyroclastic material surrounding a crater of diameter 650 m. The amount of erupted pyroclastic material is estimated as 0.04 km3, the total weight being over 70 million tons. A discussion is provided of the impact of these eruptions on the environment; we describe renewed hydrothermal activity and the formation of a new group of hot springs in the Akademia Nauk caldera, and estimate the possibility of breakthrough floods from Lake Karymsky etc.

Представлены материалы исследований деятельности вулканов Карымского долгоживущего вулканического центра на Камчатке в 1996 г. Рассмотрены особенности динамики и вещественный состав пород одновременно начавшихся извержений вулкана Карымский и в кальдере Академии Наук. Эффузивно-эксплозивное извержение Карымского вулкана возобновилось после 14-летнего периода покоя и в течение года поставило через вершинный кратер -30 млн.т вещества андезитодацитового состава. Предполагается длительная эруптивная активность этого вулкана в ближайшие годы. Одновременно с типичной для Карымского вулкана активностью в 6 км южнее впервые на Камчатке в историческое время наблюдалось субаквальное эксплозивное извержение в озере, занимающем кальдеру Академии Наук. За 18ч извержения в северной части Карымского озера выросла постройка из пирокластического материала базальтового, андезитобазальтового состава с кратером диаметром 650 м. Объем извергнутого пирокластического материала оценивается в 0.04 км3, общий вес >70 млн.т. Обсуждены последствия извержений для окружающей среды, описаны оживление гидротермальной деятельности и образование новой группы горячих источников в кальдере Академии Наук, сделаны оценки прорывных паводков из Карымского озера и т.п.
http://repo.kscnet.ru/777/ [связанный ресурс]
Muravyev Y.D., Salamatin A.N. Mass balance and thermal regime of a crater glacier at Ushkovskii volcano // Volcanology and Seismology. 1990. V. 11. № 3. P. 411-424.    Аннотация
A thermal model has been constructed for a steady-state glacier of Ushkovskii Volcano. Analysis of ice mass balance components has revealed elevated heat flow (mean valce 10 W/m2) in the summit crater wich has remained nearly constant over the last 40 years. The measured accumulation rate and temperature distribution in the snow and firn body in the middle of the Gorshkov crater suggest the existence of a considerable uplift (a small embedded crater) overlain by the glaciers. The formulas proposed in this paper can be used to evaluate critical state parameters for unsteady ice masses on the slopes of Klyuchevskoi Volcano.

Построена теплофизическая модель стационарного состояния ледника в активном кратере Ушковского вулкана. Анализ составляющих баланса массы льда показал повышенный геотермический поток (среднее значение 10 Вт/м¤) в пределах вершинного конуса и слабую его изменчивость за последние 40 лет. По измеренной скорости аккумуляции и распределению температуры в снежнофирновой скорости аккумуляции и распределению температуры в снежно-фирновой толще в центре кратера Горшкова предполагается существование значительного поднятия (вложенного малого кратера), перекрытого ледником.
Полученные расчетные формулы помогут оценить параметры критических состояний нестационарных ледяных масс на склонах Ключевского вулкана.
Muravyev Y.D., Shiraiwa T. 400 years of climatic change in Kamchatka Peninsula, Russia: paleoglaciologic, tree-ring and ice-core evidance // Proceedings International Workshop. Matsuyama, Japan, 2002. 2002. P. 76-91.
National Report for the International Association of Volcanology and Chemistry of the Earth’s Interior of the International Union of Geodesy and Geophysics 2011–2014 // Geoinf. Res. Papers, 3, BS3011. / Ed. Churikova T.G., Gordeychik B.N., Fedotov S.A. 2015. 185 p. № 10.2205/2015IUGG-RU-IAVCEI.    Аннотация
In the present National Report, major results are given of research conducted by Russian scientists in 2011–2014 on the topics of the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) of the International Union of Geodesy and Geophysics. Kamchatka Peninsula with its famous Klyuchevskaya Group of volcanoes is the most volcanically active area in Russia and one of the most active in the world. Majority of researches and scientific results on Volcanology and Geochemistry of the Earth’s Interior during 2011–2014 were achieved in this region including recent data on new Tolbachik fissure eruption in 2012–2013. Besides it, the scientific results on the magmatism outside Russia, which were achieved by Russian scientists, are also included in this review. Major achievements in the chemistry of the Earth, geothermy, geodynamics, geochronology and deep mantle structure are featured. The studies as for the single volcanoes as well the regional observations are outlined. The theoretical and applied efforts connected to the volcanological processes are considered. The main conclusions are illustrated by summarized figures. All the required references are given.

В данном Национальном отчете представлены основные результаты исследований, проводимых российскими учеными в 2011—2014 гг., по темам, соответствующим направлениям деятельности Международной ассоциации вулканологии и химии недр Земли (МАВХНЗ) Международного геодезического и геофизического союза (МГГС). Полуостров Камчатка с его знаменитой Ключевской группой вулканов являются наиболее вулканически активной областью России и одной из самых активных в мире. Основные результаты исследований по вулканологии и химии недр Земли в 2011—2014 гг. были получены в данном регионе, включая недавние данные по новому трещинному извержению вулкана Толбачик в 2012—2013 гг. Кроме того, в отчет включены полученные российскими учеными научные результаты по магматизму за пределами России. В отчете представлены основные достижения по геохимии, геотермии, геодинамике, геохронологии и глубинному строению мантии. Описаны исследования как для отдельных вулканов, так и для целых регионов. Рассмотрены теоретические прикладные вопросы вулканических процессов. Основные выводы приведены на сводных иллюстрациях. Приведены все требуемые ссылки.
Neal C.A., Girina O.A., Ferguson G., Osiensky J. AIRBORNE ASH HAZARD MITIGATION IN THE NORTH PACIFIC: A MULTI-AGENCY, INTERNATIONAL COLLABORATION // Proceedings of the 2nd International Conference on Volcanic Ash and Aviation Safety, June 21-24, 2004, Session 2. Alexandria, Virginia (USA): 2004. P. 55
Neal C.A., Girina O.A., Senyukov S.L., Rybin A.V., Osiensky J., Hall T., Nelson K., Izbekov P. Eruption warning systems for aviation in Russia: a 2007 status report // 4th International Workshop on Volcanic Ash. Natural Hazards. New Zealand. 2007. 2007. P. 1-7.
Neal C.A., Girina O.A., Senyukov S.L., Rybin A.V., Osiensky J., Izbekov P., Ferguson G. Russian eruption warning systems for aviation // Materials of ISTC International Workshop “Worldwide early warning system of volcanic activities and mitigation of the global/regional consequences of volcanic eruptions”, Moscow, Russia, July 8-9, 2010. Moscow: ISTC. 2011. P. 29-47.
Neal C.A., Girina O.A., Senyukov S.L., Rybin A.V., Osiensky J., Izbekov P., Ferguson G. Russian eruption warning systems for aviation // Natural Hazards. 2009. V. 51. № 2. P. 245-262. doi: 10.1007/s11069-009-9347-6.    Аннотация
More than 65 potentially active volcanoes on the Kamchatka Peninsula and the Kurile Islands pose a substantial threat to aircraft on the Northern Pacific (NOPAC), Russian Trans-East (RTE), and Pacific Organized Track System (PACOTS) air routes. The Kamchatka Volcanic Eruption Response Team (KVERT) monitors and reports on volcanic hazards to aviation for Kamchatka and the north Kuriles. KVERT scientists utilize real-time seismic data, daily satellite views of the region, real-time video, and pilot and field reports of activity to track and alert the aviation industry of hazardous activity. Most Kurile Island volcanoes are monitored by the Sakhalin Volcanic Eruption Response Team (SVERT) based in Yuzhno-Sakhalinsk. SVERT uses daily moderate resolution imaging spectroradiometer (MODIS) satellite images to look for volcanic activity along this 1,250-km chain of islands. Neither operation is staffed 24 h per day. In addition, the vast majority of Russian volcanoes are not monitored seismically in real-time. Other challenges include multiple time-zones and language differences that hamper communication among volcanologists and meteorologists in the US, Japan, and Russia who share the responsibility to issue official warnings. Rapid, consistent verification of explosive eruptions and determination of cloud heights remain significant technical challenges. Despite these difficulties, in more than a decade of frequent eruptive activity in Kamchatka and the northern Kuriles, no damaging encounters with volcanic ash from Russian eruptions have been recorded.
Neal C.A., Herrick J.A., Girina O.A., Chibisova M.V., Rybin A.V., McGimsey R.G., Dixon J. 2010 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: Summary of events and response of the Alaska Volcano Observatory. 2014. 76 p.    Аннотация
The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest or suspected unrest at 12 volcanic centers in Alaska during 2010. The most notable volcanic activity consisted of intermittent ash emissions from long-active Cleveland volcano in the Aleutian Islands. AVO staff also participated in hazard communication regarding eruptions or unrest at seven volcanoes in Russia as part of an ongoing collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.
http://dx.doi.org/10.3133/sir20145034 [связанный ресурс]
Neal C.A., McGimsey R.G., Girina O.A. 2002 Volcanic Activity in Alaska and Kamchatka: Summary of Events and Response of the Alaska Volcano Observatory // Open-File Report 2004-1058. 2004. 55 p.
Nechaeva T.B., Kochegura V.V., Zubov A.G. Studies of secular paleomagnetic variations in Kamchatka using Holocene tephra // Journal of Volcanology and Seismology. 1984. V. 5. № 2. P. 213-218.    Аннотация
Analysis of paleomagnetic variations along parallel sections across the Holocene soil-pyroclastic cover of Ма1уĭ Semyachek Volcano in Kamchatka has shown that directions of magnetization were similar during а period of 350 — 6000 В.P. This proves that magnetization is primary and applicable for reconstruction of the history of the Earth's magnetic field. Paleomagnetic variations that occurred in the interval of 1000 — 4000 В.P. have been investigated in the contemporaneous tephra section of Klyuchevskoĭ Volcano 240 km to the north.
It is known that since some of the tephra horizons may be missing in this section owing to specific conditions of tephra deposition, а more detailed knowledge of paleomagnetic variations requires the study of two or more parallel sections.

Проведено сравнение палеовариаций магнитного поля Земли, полученных по параллельным разрезам голоценового почвенно-пирокластического чехла вулкана Малый Семячик на Камчатке. Показано, что в интервале возраста 300 — 6000 лет назад наблюдается подобие изменений направления остаточной намагниченности подтверждающее первичность этой намагниченности и пригодность ее для реконструкции истории геомагнитного поля. Палеовариации, выделенные для интервала 1000 — 4000 лет назад, прослежены в одновозрастных слоях в 240 км к северу, в разрезе тефры Ключевского вулкана.
Выяснено, что вследствие связанной со спецификой формирования отложений тефры возможности выпадения из разрезов отдельных горизонтов для получения достаточно детальной картины палеовариаций необходимо изучение двух или более параллельных разрезов.
Рис. 6, библ. 3 назв.
http://repo.kscnet.ru/275/ [связанный ресурс]
Neill Owen K., Hammer Julia E., Izbekov Pavel E., Belousova Marina G., Belousov Alexander B., Clarke Amanda B., Voight Barry Influence of pre-eruptive degassing and crystallization on the juvenile products of laterally directed volcanic explosions // Journal of Volcanology and Geothermal Research. 2010. V. 198. № 1-2. P. 264-274. doi:10.1016/j.jvolgeores.2010.09.011.
Nemoto T. Geologic and petrologic study of the Central Kurile Islands, VI - Dzigoku Volcano, Urup Island // Bulletin of the Volcanological Society of Japan. 1937. V. 3. № 2.
Nishizawa T., Nakamura Hitomi, Churikova T., Gordeychik B., Ishizuka Osamu, Haraguchi Satoru, Miyazaki Takashi, Vaglarov Bogdan S., Ueki K., Toyama C., Iwamori Hikaru Geochemistry of high-Mg andesitic rocks in NE Kamchatka // V.M. Goldschmidt Conference, Yokohama, Japan, 26 June - 1 July 2016. Program and Abstracts. 2016. P. 2295    Аннотация
The northeast Kamchatka Peninsula is characterized by unique tectonic regimes: (i) the triple junction ~30 km off the east coast [1], (ii) subduction of the Emperor Seamount Chain [2], and (iii) possible asthenospheric flow between the mantle wedge and the sub-slab mantle via the edge of subducted Pacific slab [3]. Within this area, a monogenetic volcanic group occurs along the east coast, including high-Mg andesitic rocks and relatively primitive basalts (East Cones, EC [4]). We have conducted geochemical studies of the EC lavas, with bulk rock major and trace elements, Sr-Nd isotopic compositions, and K-Ar and Ar-Ar ages, based on which a possible contribution of subducted seamounts and its relation to the tectonic setting are discussed.
The elemental and isotopic compositions indicate that the lavas from individual cones have distinct mantle sources with different amounts and/or compositions of slab-derived fluids. Based on mass balance, water content and melting phase relations, we estimate the melting P-T conditions to be ~1200 ℃ at 1.5 GPa, while the slab surface temperature is 620 – 730 ℃ (at 50-80 km depth). The Sr-Nd isotopic compositions is close to Late Cretaceous Emperor Seamount Chain, especially Detroit [5]. The K-Ar and Ar-Ar ages of the Middle to Late Pleistocene are consistent with the present tectonic setting after 2 Ma [6].
These results suggest that the EC lavas including high-Mg andesite and basalt were generated by mantle flux-melting induced by dehydration of a subducted seamount inheriting a local thermal anomaly [7, 8]
Nishizawa Tatsuji, Nakamura Hitomi, Churikova T., Gordeychik B., Ishizuka Osamu, Iwamori Hikaru Genesis of Quaternary volcanism of high-Mg andesitic rocks in the northeast Kamchatka Peninsula // Japan Geoscience Union Meeting. 22-26 May 2016, Makuhari, Messe. 2016. P. SVC48-02.    Аннотация
Arc magmatism is a product of subduction factory, involving thermal and chemical interactions
between a subducted slab as a material input and mantle wedge as a processing factory. In turn, the
compositions of arc magma provide invaluable information concerning the material input and the
interactions. The northeast Kamchatka Peninsula is an ideal field to examine such interactions and
relationships, being characterized by (1) subduction of the Emperor Seamount Chain (Davaille and
Lees, 2004), and (2) possible material and thermal interaction among the subducted slab, the
overlying mantle wedge and the sub-slab mantle via the edge of subducted Pacific slab (Portnyagin
and Manea, 2008). Within this area, a monogenetic volcanic group occurs along the east coast,
including high-Mg andesitic rocks and relatively primitive basalts (East Cones, EC (Fedorenko,
1969)). We have conducted geochemical studies of the EC lavas, with bulk rock major and trace
elements, and K-Ar and Ar-Ar ages, based on which a possible contribution of subducted seamounts
and its relation to the tectonic setting are discussed.
The elemental compositions indicate that the lavas from individual cones have distinct mantle
sources with different amounts and/or compositions of slab-derived fluids. Based on mass balance,
water content and melting phase relations, we estimate the melting P-T conditions to bet ~1200 ℃
at 1.5 GPa, while the slab surface temperature is 620 –730 ℃ (at 50-80 km depth). Compared with
the southern part of Kamchatka, the slab surface temperature beneath EC seems to be high due to the
thinner Pacific slab associated with the seamount chain and/or the plate rejuvenation from a mantle
plume impact (Davaille and Lees, 2004; Manea and Manea, 2007).
The K-Ar and Ar-Ar ages of the Middle Pleistocene are consistent with the tephrochronological
study (Uspensky and Shapiro, 1984) and the present tectonic setting after 2 Ma (Lander and Shapiro,
2007). The high-Mg andesite with the highest SiO2 content in the EC lavas shows the oldest age
(0.73 ±0.06 Ma) within not only EC but also the northeast part of Kamchatka (e.g., Churikova et
al., 2015, IAVCEI). On the other hand, the rest of EC lava samples show relatively younger ages to
0.18 ±0.07 Ma. These results suggest that the EC lavas including high-Mg andesite and basalt were
generated by mantle flux-melting induced by dehydration of a subducted seamount inheriting a local
thermal anomaly (Nishizawa et al., 2014, JpGU; 2015, JpGU).

島弧火成活動はサブダクションファクトリーの産物で, それは沈み込んだスラブ(物質のインプット)-マン
トルウェッジ(加工工場)間の熱的・物質的相互作用を含む. 島弧マグマの組成は, その物質インプットと相
互作用について非常に貴重な情報をもたらす. カムチャツカ半島北東部はそのような相互作用と関係性を調べ
るうえで理想的な場所である, それは次のような特徴を有する為だ(1)天皇海山列の沈み込み(Davaille and
Lees, 2004)(2)沈み込んだスラブ, マントルウェッジと太平洋スラブエッジにかけてのサブスラブマントル
との物質的・熱的相互作用の可能性(Portnyagin and Manea, 2008). この地域の東海岸沿いに, 高-Mg安山岩
と比較的初生的な玄武岩を産出する単成火山群が確認されている(East Cones, EC(Fedorenko, 1969)).
我々はこのEC溶岩について全岩主要-微量元素組成分析とK-Ar, Ar-Ar年代測定を含む地球化学的研究を行い,
EC溶岩の組成は, 火山ごとに独立したソースに由来しており, そのソースの違いはスラブ起源流体の量および
またはその組成の違いによることを示す. マスバランス, 含水量, 相関係に基づき, 我々は溶融温度-圧力条
件を推定した, 溶融温度・圧力~1200℃, 1.5 GPa, スラブ表面温度 620-730℃(深度50-80 km). カム
チャツカ南部に沈み込むスラブ表面温度と比較すると, EC直下のスラブ表面温度は高く, これは天皇海山列に
えられる(Davaille and Lees, 2004; Manea and Manea, 2007).
K-Ar, Ar-Ar年代測定値は中期更新世で, これはテフラ層序学からの推定年代と一致し(Uspensky and
Shapiro, 1984), 2Ma以降現在のテクトニックセッティングに変化したこととも矛盾しない(Lander and
Shapiro, 2007). 最もSiO2含有量が高い高Mg安山岩は最古の年代を示し(0.73 ±0.06 Ma), これはECのみな
らずカムチャツカ北東部においても最も古いとみられる(e.g., Churikova et al., 2015, IAVCEI). 一方他
のECはより若い年代を示す(~0.18 ±0.07 Ma). これらの結果は以下のことを示す: 高Mg安山岩, 玄武岩を
ラックス溶融によりもたらされた(西澤他, 2014, JpGU; 2015, JpGU).
Ozerov A., Ispolatov I., Lees J. Modeling Strombolian eruptions of Karymsky volcano, Kamchatka, Russia // Journal of Volcanology and Geothermal Research. 2003. V. 122. № 3–4. P. 265 - 280. doi: 10.1016/S0377-0273(02)00506-1.    Аннотация
A model is proposed to explain temporal patterns of activity in a class of periodically exploding Strombolian-type andesite volcanoes. These patterns include major events (explosions) which occur every 3–30 min and subsequent tremor with a typical period of 1 s. This two-periodic activity is thought to be caused by two distinct mechanisms of accumulation of the elastic energy in the moving magma column: compressibility of the magma in the conduit and viscoelastic response of the almost solid magma plug on the top. A release of the elastic energy occurs during a stick–slip dynamic phase transition in a boundary layer along the walls of the conduit; this phase transition is driven by the shear stress accumulated in the boundary layer. The intrinsic hysteresis of this first-order phase transition explains the long periods of inactivity in the explosion cycle. Temporal characteristics of the model are found to be qualitatively similar to the acoustic and seismic signals recorded at Karymsky volcano in Kamchatka.
Ozerov Alexei Y. The evolution of high-alumina basalts of the Klyuchevskoy volcano, Kamchatka, Russia, based on microprobe analyses of mineral inclusions // Journal of Volcanology and Geothermal Research. 2000. V. 95. № 1–4. P. 65 - 79. doi: 10.1016/S0377-0273(99)00118-3.    Аннотация
The origin of calc-alkaline high-alumina basalts (HAB) of the Klyuchevskoy volcano, Kamchatka, was examined using electron microprobe analyses of phenocrysts and mineral phases included in the phenocrysts. Continuous trends on major-element variation diagrams suggest the HAB were derived from high-magnesia basalt (HMB) by fractional crystallization. Phenocrysts in the HAB are strongly zoned: olivine (Mg# 91–64), clinopyroxene (Wo45–38En40–51Fs5–20) and chrome—spinel/magnetite inclusions in them (Cr2O3 45–0 wt.%, TiO2 0.5–11%). Microprobe analyses of minerals included in the phenocrysts provide additional constraints on the mineral crystallization trends in the HAB. Fe/Mg partitioning data, when applied to the phenocrysts cores, show they crystallized from a HMB. The similarity of phenocryst core compositions in HAB with those in HMB strongly suggests a genetic relationship between the two magma types.
Panov V.K., Slezin Yu.B. The mechanism of the lava field formation at the Predskazanny parasitic eruption (Klyuchevskoy volcano, 1983) // Volcanology and Seismology. 1988. V. 7. P. 321-335.


Рекомендуемые браузеры для просмотра данного сайта: Google Chrome, Mozilla Firefox, Opera, Yandex. Использование другого браузера может повлечь некорректное отображение содержимого веб-страниц.
Условия использования материалов и сервисов Геопортала

Copyright © Институт вулканологии и сейсмологии ДВО РАН, 2010-2018. Пользовательское соглашение.
Любое использование либо копирование материалов или подборки материалов Геопортала может осуществляться лишь с разрешения правообладателя и только при наличии ссылки на geoportal.kscnet.ru
©Design: roman@kscnet.ru