Библиография
Вулкан:
Группировать:  
Записей: 2743
Башарина Л.А. Фумарольная деятельность вулкана Безымянного в 1956—1957 гг. // Бюллетень вулканологической станции. 1960. № 29. С. 15-27.
Мархинин Е.К., Башарина Л.А., Борисов О.Г., Борисова В.Н., Пугач В.Б., Тимербаева К.М., Токарев П.И. Изучение состояния вулканов Ключевской группы и вулкана Шевелуч в 1958—1959 гг. // Бюллетень вулканологической станции. 1961. Вып. 31. С. 3-16.
Горельчик В.И., Гарбузова В.Т., Сторчеус А.В. Глубинные вулканические процессы под Ключевским вулканом по сейсмологическим данным // Вулканология и сейсмология. 2004. № 6. С. 21-34.
   Аннотация
Анализ данных имеющегося в настоящее время длинного временного ряда сейсмологических на­блюдений (1977-1996 гг.) позволяет уточнить и дополнить сведения о магматической деятельности и сейсмичности Ключевского вулкана в пределах земной коры. В земной коре под вулканом выде­лены четыре горизонта с различным уровнем и характером сейсмичности: -4-5 км; 5-12 км; 12-20 км; 20-35 км. Исследованы пространственно-временные закономерности сейсмичности в выделенных горизонтах в зависимости от активности вулкана. В первых трех горизонтах происходят, главным образом, землетрясения, возникающие в твердой среде под действием непрерывно меняющегося поля напряжений, создаваемого вокруг магматических каналов, очагов, систем даек и силлов, вне­дряющихся в вулканическую постройку. В нижних горизонтах земной коры и переходном от коры к мантии слое (20-35 км) выявлена зона с аномальными физическими свойствами, в которой суще­ствуют длительно действующие источники генерации глубоких длиннопериодных землетрясений, имеющие иную генетическую природу, чем вулкано-тектонические землетрясения в исследуемом районе. В качестве гипотезы, наиболее удовлетворительно объясняющей наблюдаемые кинемати­ческие и динамические характеристики этих землетрясений под Ключевским вулканом, предлага­ется рассматривать возникновение импульсов давления в магме. Причиной появления таких им­пульсов могут быть быстропротекающие фазовые переходы в метастабильной магме. Таким про­цессом, по нашему мнению, может быть отделение газа вследствие спонтанной полимеризации силикатов в расплаве. Предложена модель генерации глубоких длиннопериодных землетрясений, удовлетворительно согласующаяся с экспериментальными данными и наблюдаемыми характерис­тиками землетрясений.
Горельчик В.И., Башарина Л.А., Дмитриев Л.Б. Режимные наблюдения на Авачинском вулкане в 1970 г. // Бюллетень вулканологических станций. 1972. № 48. С. 21-28.
Башарина Л.А. Влияние вулканической деятельности на химический состав атмосферных осадков и воздух Камчатки // Бюллетень вулканологических станций. 1974. № 50. С. 104-111.
Сорокин А.А., Гирина О.А., Лупян Е.А., Мальковский С.И., Балашов И.В., Ефремов В.Ю., Крамарева Л.С., Королев С.П., Романова И.М., Симоненко Е.В. Спутниковые наблюдения и результаты численного моделирования для комплексного анализа распространения пепловых облаков во время эксплозивных извержений вулканов Камчатки // Метеорология и гидрология. 2017. № 12. С. 25-34.
   Аннотация
Пепловые облака, возникающие в результате эксплозивных извержений вулканов, представляют реальную угрозу для жизнедеятельности человека (для полетов воздушных судов, работы аэродромов и т.д.), поэтому обнаружение, отслеживание и прогноз их перемещения актуальны и важны. Описаны возможности и примеры применения нового инструмента, созданного на базе информационной системы “Мониторинг активности вулканов Камчатки и Курил” (VolSatView). Он позволяет решать задачи комплексного мониторинга и прогноза распространения пепловых облаков с помощью данных дистанционного зондирования и результатов математического моделирования, а также оценить параметры эксплозивных событий.
Sorokin A.A., Girina O.A., Loupian E.A., Malkovskii S.I., Balashov I.V., Efremov V.Yu., Kramareva L.S., Korolev S.P., Romanova I.M., Simonenko E.V. Satellite observations and numerical simulation results for the comprehensive analysis of ash clouds transport during the explosive eruptions of Kamchatka volcanoes // Russian Meteorology and Hydrology. 2017. Vol. 42. № 12. P. 759-765. doi: 10.3103/S1068373917120032.
   Аннотация
Ash clouds resulting from explosive volcanic eruptions pose a real threat to human (for aircraft flights, airports operations, etc.); therefore, the detection, monitoring, and forecast of their movement is an urgent and important issue. The features and examples of application of the new tool developed on the basis of "Monitoring of active volcanoes of Kamchatka and the Kurile Islands" information system (VolSatView) are described. It allows the integrated monitoring and forecasting of ash cloud transport using the data of remote sensing and mathematical modeling as well as the assessment of the parameters of explosive events.
Рычагов С.Н., Сандимирова Е.И., Сергеева А.В., Нуждаев И.А. Состав пепла вулкана Камбальный (извержение 2017 г.) // Вестник КРАУНЦ. Серия: Науки о Земле. 2017. Вып. 36. № 4. С. 13-27.
   Аннотация
На основании комплексных исследований получены данные о гранулометрическом, химическом и минеральном составах пепла вулкана Камбальный, извержение которого произошло в марте–апреле 2017 г.
Установлено, что пепел является резургентным и состоит из гидротермально измененных андезитов Камбального хребта, подстилающих вулкан. Предполагается, что сейсмическая подготовка к извержению и эксплозивное извержение вулкана Камбальный в 2017 г. обусловлены активизацией газо-гидротермальных процессов в породах фундамента Камбального хребта.
Гришин С.Ю., Перепелкина П.А., Бурдуковский М.Л., Яковлева А.Н. Начало восстановления лесной растительности после воздействия пирокластической волны вулкана Шивелуч (Камчатка) 27 февраля 2005 г. // Вестник КРАУНЦ. Серия: Науки о Земле. 2017. Вып. 36. № 4. С. 28-38.
   Аннотация
В еловом лесу, погибшем после прохождения мощной пирокластической волны, на отложениях волны началось поселение ивы удской, которая за десятилетие сформировала древесный полог высотой 6–8 м. Выявлены факторы, способствовавшие столь быстрому заселению; главными из них являются: благоприятный режим влажности корнеобитаемой зоны, созданной отложениями волны, отчасти питательные вещества погребенной почвы, а также определенная защитная роль погибшего древостоя. Обсуждаются перспективы дальнейшей сукцессии; сделан вывод, что в течение ~50 лет ива в основном выпадет, к концу столетия ель сможет частично восстановить свои позиции, но древостой будет смешанным.
Мороз Ю.Ф., Логинов В.А. Геоэлектрическая модель района Толбачинского извержения имени 50-летия ИВиС // Вулканология и сейсмология. 2016. № 6. С. 21-34. doi: 10.7868/S0203030616050059.
   Аннотация
Рассмотрены методика и результаты магнитотеллурического зондирования в модификациях АМТЗ и МТЗ. Аудиомагнитотеллурическое зондирование (АМТЗ) было проведено впервые в районе современного извержения Толбачинского вулкана. Результаты анализа магнитотеллурических параметров свидетельствуют, что геоэлектрическую среду, в связи с региональным разломом, можно аппроксимировать в виде двумерно-неоднородной модели. В качестве основных для интерпретации приняты продольная и поперечная кривые зондирований. Совместный анализ этих кривых и псевдоразрезов фаз импеданса свидетельствуют о геоэлектрической неоднородности среды в районе прорыва магматических расплавов им. С.И. Набоко. По данным бимодальной инверсии кривых АМТЗ получен геоэлектрический разрез, содержащий проводящую неоднородность, связываемую с разломом, по которому флюиды поступают к дневной поверхности. Наряду с АМТЗ для изучения глубинной электропроводности использованы МТЗ в расширенном диапазоне, по которым выделяется коровая проводящая аномалия на глубинах 15–35 км. По данным АМТЗ, МТЗ и другой геолого-геофизической информации составлена концептуальная модель района, характеризующая возможную природу аномальных зон. Даны приближенные оценки пористости пород в разломной зоне, по которой магматические расплавы поступали в вышележащие толщи в районе прорыва им. С.И. Набоко.