Библиография
Вулкан:
Группировать:  
Выбрать:     Все     "     0     1     2     3     4     5     7     A     B     C     D     E     F     G     H     I     K     L     M     N     O     P     Q     R     S     T     U     V     W          А     Б     В     Г     Д     Е     Ж     З     И     К     Л     М     Н     О     П     Р     С     Т     У     Ф     Х     Ц     Ч     Ш     Щ     Э     Ю     Я     
Записей: 32
Страницы:  1 2 3 4
 S
Spaceborne and field-based observations of Bezymianny Volcano, Kamchatka from 2000-2008 (2008)
Carter A.J., Ramsey M.S., Girina O.A., Belousov A.B., Durant A., Skilling I., Wolfe A. Spaceborne and field-based observations of Bezymianny Volcano, Kamchatka from 2000-2008 // Abstracts. AGU Fall Meeting, 14-19 December. San-Francisco, USA: AGU. 2008. doi: V43A-2140.
Spaceborne observations of the 2000 Bezymianny, Kamchatka eruption: the integration of high-resolution ASTER data into near real-time monitoring using AVHRR (2004)
Ramsey Michael, Dehn Jonathan Spaceborne observations of the 2000 Bezymianny, Kamchatka eruption: the integration of high-resolution ASTER data into near real-time monitoring using AVHRR // Journal of Volcanology and Geothermal Research. 2004. Vol. 135. № 1-2. P. 127-146. doi:10.1016/j.jvolgeores.2003.12.014.
   Аннотация
Since its launch in December 1999, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument has been observing over 1300 of the world's volcanoes during the day and night and at different times of the year. At the onset of an eruption, the temporal frequency of these regularly scheduled observations can be increased to as little as 1–3 days at higher latitudes. However, even this repeat time is not sufficient for near real-time monitoring, which is on the order of minutes to hours using poorer spatial resolution (>1 km/pixel) instruments. The eruption of Bezymianny Volcano (Kamchatkan Peninsula, Russia) in March 2000 was detected by the Alaska Volcano Observatory (AVO) and also initiated an increased observation frequency for ASTER. A complete framework of the eruptive cycle from April 2000 to January 2001 was established, with the Advanced Very High Resolution Radiometer (AVHRR) data used to monitor the large eruptions and produce the average yearly background state for the volcano. Twenty, nearly cloud-free ASTER scenes (2 days and 18 nights) show large thermal anomalies covering tens to hundreds of pixels and reveal both the actively erupting and restive (background) state of the volcano. ASTER short-wave infrared (SWIR) and thermal infrared (TIR) data were also used to validate the recovered kinetic temperatures from the larger AVHRR pixels, as well as map the volcanic products and monitor the thermal features on the summit dome and surrounding small pyroclastic flows. These anomalies increase to greater than 90 °C prior to a larger eruption sequence in October 2000. In addition, ASTER has the first multispectral spaceborne TIR capability, which allowed for the modeling of micrometer-scale surface roughness (vesicularity) on the active lava dome. Where coupled with ongoing operational monitoring programs like those at AVO, ASTER data become extremely useful in discrimination of small surface targets in addition to providing enhanced volcanic mapping capabilities.
Spatial Data Infrastructure for information support of volcanological investigations (2018)
Romanova I.M., Girina O.A. Spatial Data Infrastructure for information support of volcanological investigations // 10th Biennual workshop on Japan-Kamchatka-Alaska subduction processes (JKASP-2018). Petropavlovsk-Kamchatsky, Russia, August 20-26. // 10th Biennual workshop on Japan-Kamchatka-Alaska subduction processes (JKASP-2018). Petropavlovsk-Kamchatsky: IVS FEB RAS. 2018. P. 193-195.
Spatial and morphometric analyses of Anaun monogenetic volcanic field (Sredinny Range, Kamchatka) (2018)
Melnikov D.V., Volynets Anna Spatial and morphometric analyses of Anaun monogenetic volcanic field (Sredinny Range, Kamchatka) // 7th International Maar Conference, Olot, Catalonia, Spain. 2018. P. 61
   Аннотация
Monogenetic volcanic fields are frequently located in the faulted area and in clusters which are associated with the particular geometry of the magmatic chambers and structures of the magma plumbing system in the crust. The method of cluster analyses of the spatial distribution and morphometric characteristics of the cinder cones was used in our research of the conditions of origin and evolution of one of the largest monogenetic fields in Kamchat-ka back-arc-the Anaunsky Dol, or Anaun MVF. Kamchat-ka subduction system is located at the northwestern part of the Pacific at the convergent boundary of the Okhotsk and Pacific plates. Today, Sredinny Range represents its back-arc part and is characterized by the wide distribution of the monogenetic volcanic fields: it has more than 1000 cinder cones, which deposits cover the area of about 8500 km2 (Laverov, 2005; Ogorodov et al., 1972) (Fig. 1). Sredinny Range has a complex structure with several volcanic provinces with different geological history and variable composition of products. Anaun monogenetic volcanic field occupies one of the lowest sections of the whole Sredinny Range. The youngest volcanism in this area (according to the geological map, it was formed in Quaternary times, although our geochemical research and isotopic dating shows its earlier age) is confined to the lowered block of basement rocks. Shield volcanoes, volcanic ridges, cinder and lava cones are located on a low-laying volcanic dale. We made an attempt to make a spatial analysis of distribution of the volcanic edifices and to quantitatively estimate the structural control of the magma plumbing channels. Based on a digital relief model (DEM SRTM, spatial resolution 30 m) we distinguished more than 100 morphometrically expressed cinder cones. For them, using semi-automatic mode, we estimated the morphometric characteristics: height, diameter of the basement, height/basement ratio, angle of the slope, volume of the edifice. With time, cinder cones change their shape due to the erosion processes. Therefore, finally the edifice height is decreased while the basement diameter increased. Determination of the morphometric parameters allowed us to compose a relative age scale for the cinder cones located in Anaun monogenetic volcanic field. Spatial analysis has shown that cones tend to form series of clusters, which are associated with the systems of lineaments. Statistically significant patterns in the cinder cones distribution were then compared with the strike of lineaments to estimate possible location of the magma feeding channels.
Spatial compositional variations in Quaternary volcanic from the Northern Kuril Islands, Russia. (2011)
Bergal-Kuvikas Olga, Nakagawa Mitsuhiro, Avdeiko Gennady, Rashidov V.A. Spatial compositional variations in Quaternary volcanic from the Northern Kuril Islands, Russia. // 7th Biannual workshop on JKASP 2011: Mitigating risk through international volcano, earthquake and tsunami science.. 2011, Petropavlovsk-Kamchatsky. 2011.
Sr-Nd isotopic composition of Shiveluch volcanic massif, Kamchatka (2014)
Gorbach Natalia, Portnyagin Maxim, Hauff Folkmar Sr-Nd isotopic composition of Shiveluch volcanic massif, Kamchatka // 8-th Biennial Workshop on Japan-Kamchatka-Alaska Subduction Processes, JKASP 2014. 22-26 September, 2014, Sapporo, Japan. 2014.
Strong Explosive Eruptions of Kamchatkan Volcanoes in 2013 (2014)
Girina O.A., Manevich A.G., Melnikov D.V., Nuzhdaev A.A., Demyanchuk Yu.V., Petrova E. Strong Explosive Eruptions of Kamchatkan Volcanoes in 2013 // Abstracts. Japan Geoscience Union Meeting. Yokohama, Japan: JpGU. 2014. № 00275.
Studies of secular paleomagnetic variations in Kamchatka using Holocene tephra (1984)
Nechaeva T.B., Kochegura V.V., Zubov A.G. Studies of secular paleomagnetic variations in Kamchatka using Holocene tephra // Volcanology and Seismology. 1984. Vol. 5. № 2. P. 213-218.
   Аннотация
Analysis of paleomagnetic variations along parallel sections across the Holocene soil-pyroclastic cover of Ма1уĭ Semyachek Volcano in Kamchatka has shown that directions of magnetization were similar during а period of 350 — 6000 В.P. This proves that magnetization is primary and applicable for reconstruction of the history of the Earth's magnetic field. Paleomagnetic variations that occurred in the interval of 1000 — 4000 В.P. have been investigated in the contemporaneous tephra section of Klyuchevskoĭ Volcano 240 km to the north.
It is known that since some of the tephra horizons may be missing in this section owing to specific conditions of tephra deposition, а more detailed knowledge of paleomagnetic variations requires the study of two or more parallel sections.
Study and mechanism of the simultaneous 1996 Karymsky volcano and Akademii Nauk caldera eruptions in Kamchatka (1998)
Fedotov S.A. Study and mechanism of the simultaneous 1996 Karymsky volcano and Akademii Nauk caldera eruptions in Kamchatka // Volcanology and Seismology. 1998. Vol. 19. № 5. P. 525-566.
Study of the Kamchatkan active volcanoes with help of the information system VolSatView (2014)
Gordeev E.I., Lupian E.A., Girina O.A., Efremov V.Yu., Sorokin A.A., Melnikov D.V., Manevich A.G., Romanova I.M., Korolev S.P., Kramareva L.S. Study of the Kamchatkan active volcanoes with help of the information system VolSatView // Modern Information Technologies in Earth Sciences. Proceedings of the International Conference, Petropavlovsk-Kamchatsky, September 8-13, 2014. // Modern Information Technologies in Earth Sciences. Proceedings of the International Conference, September 8-13, 2014, Petropavlovsk-Kamchatsky. Vladivostok: Dalnauka. 2014. P. 52-53.