Main BibliographyПо авторам
 
 Bibliography
Volcano:

 
Jump to:     All     A     B     C     D     E     F     G     H     I     J     K     L     M     N     O     P     R     S     T     V     W     Y     Z     А     Б     В     Г     Д     Е     Ж     З     И     К     Л     М     Н     О     П     Р     С     Т     У     Ф     Х     Ц     Ч     Ш     Э     Я     
Records: 2138
Pages:  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
 K
Kuno H. Petrology of Alaid volcano, north Kurile // Japanese journal of geology and geography. 1935. V. 12. P. 153-162.
Kuznetsova E., Muravyev Y.D., Motenko R. The physical and chemical properties of volcanic ashes of different ages (Kamchatka) // Вулканизм и геодинамика. Мат-лы IY ВС по Вулканологии и палеовулканологии. сентябрь 2011 г., Петропавловск-Камчатский. 2011.    Annotation
Большая часть Камчатки покрыта почвенно-пирокластическим чехлом, который представляет собой непрерывно накапливающийся "слоёный пирог", состоящий из горизонтов тефры и погребенных почв. Пеплы крупнейших извержений образуют чёткие маркирующие прослои во вмещающих отложениях, которые прослеживаются на огромных территориях. Толща между маркирующими прослоями пеплов имеет также пирокластическую природу и включает как продукты менее мощных или дальних извержений, так и вторично переотложенные пеплы [2]. В данной работе представлены результаты исследования физико-химических свойств вулканических пеплов, представленных как пеплами-маркерами, так и неопознанной тефрой.
В работе использовались следующие экспериментальные методы исследования:
- гранулометрический состав определялся пипеточным методом (ГОСТ…).
- теплопроводные характеристики вулканических пеплов определяли методом регулярного режима I рода [7].
- фазовый состав влаги и температура начала замерзания определялись криоскопическим и контактным методами [7].
- минеральный анализ определен на ИК-спектрометре ФСМ-1201 (Россия) в интервале 400-4000 cм-1 при комнатной температуре. Спектральное разрешение составляло 2,0 cм-1, абсолютная калибровочная ошибка волнового числа - не больше ±0,1 cм-1 [6]. Состав стекол этих пеплов был проанализирован на микрозонде "Jeol JSM-6480LV", энергодисперсионным спектрометром "INCA-Energy 350" (окно ATW-2) в Лаборатории локальных методов исследования вещества МГУ.
Были исследованы образцы вулканического пепла, отобранные в районе Ключевской группы вулканов и в долине р. Камчатка, в диапазоне высот 129-1650 м. Почти все пеплы относятся к голоценовым, за исключением образца, отобранного из отложений озерных диатомовых глин яра Половинка в долине р. Камчатки, возраст которых относится ко второй половине раннего плейстоцена (Q21). Образец представляет собой белый рыхлый витрокластический пепел кислого состава.
Согласно ГОСТ 25100-95 по гранулометрическому составу вулканические пеплы относятся к пескам пылеватым. По содержанию SiO2 вулканическое стекло исследуемых пеплов относится к трем типам: риолитовый, андезитовый и базальтовый. Согласно данным ИК-спектроскопии в камчатских пеплах с андезитовым и базальтовым стеклом был найден аллофан, с риолитовым стеклом - опал (аллофан - аморфный слоистый алюмосиликат, опал - минерал подкласса гидроксидов, не является глинистым минералом).
Получены следующие результаты исследования физ.-хим. свойств рассматриваемых пеплов.
Фазовый состав влаги. Впервые в наших исследованиях был получен фазовый состав влаги (т.е. содержание льда, незамерзшей воды и пара) в мерзлых вулканических пеплах Камчатки (ссылки на наши работы). Наиболее важная характеристика фазового состава влаги в мёрзлой породе - зависимость содержания незамерзшей воды Ww от температуры t. Экспериментально установлены зависимости содержания незамерзшей воды от температуры для мёрзлых вулканических пеплов в диапазоне температур от 0 до -15 оС, содержание Ww при температуре ниже -3 оС изменяется незначительно. Установлено, что, например, при температуре определения теплофизических характеристик -10оС в исследуемых образцах содержание незамерзшей воды изменяется от 0 до 11%. Это связано с преобразованием вулканического стекла и появлением глинистых минералов (аллофанов). Последние характеризуются большой удельной поверхностью, что и определяет появление разного количества незамерзшей воды.
Теплопроводные свойства. Получены экспериментальные данные по изучению теплопроводности вулканических пеплов для талого и мерзлого состояния в широком диапазоне влажности и плотности (ссылки на наши работы). При изменении влажности от 0 до 78% и плотности скелета ?d от 0,7 до 1,7 г/см3 коэффициент теплопроводности ? закономерно увеличивается от 0,13 до 1,0 Вт/(м·К) в талом и от 0,14 до 1,27 Вт/(м·К) в мерзлом состоянии. При этом не смотря на то, что вулканические пеплы по гранулометрическому составу относятся к пескам пылеватым, они очень сильно отличаются от последних. Так, сравнение данных по теплопроводности для вулканогенно-обломочных и осадочных дисперсных пород показало, что вулканические дисперсные породы имеют очень низкую теплопроводность как в талом, так и в мерзлом состоянии, что объясняется многими причинами, например, разностью теплопроводностей скелета пород (теплопроводности кварца и вулканического стекла отличаются в 3-4 раза), так и формой самих частиц.
Засоленность. Анализ засоленности пеплов показал, что по ГОСТ 25100-95 все исследованные пеплы, за исключением образца, отобранного из яра Половинка, относятся к незасоленным, суммарное содержание легкорастворимых солей в них около 0,02-0,03%; пепел из яра относится к сильно засоленным. По результатам химического анализа водной вытяжки этого пепла сумма солей составляет 1,815% от массы вещества, а по химическому составу представлена преимущественно сульфатами (содержание SO42- составляет 1,242% от массы вещества). Также отмечено очень низкое pH=3,4.
Kyle Philip R., Ponomareva Vera V., Rourke Schluep Rachelle Geochemical characterization of marker tephra layers from major Holocene eruptions, Kamchatka Peninsula, Russia // International Geology Review. 2011. V. 53. № 9. P. 1059-1097. doi:10.1080/00206810903442162.    Annotation
Kamchatka Peninsula is one of the most active volcanic regions in the world. Many Holocene explosive eruptions have resulted in widespread dispersal of tephra-fall
deposits. The largest layers have been mapped and dated by the 14C method. The tephra provide valuable stratigraphic markers that constrain the age of many geological
events (e.g. volcanic eruptions, palaeotsunamis, faulting, and so on). This is the first systematic attempt to use electron microprobe (EMP) analyses of glass to characterize
individual tephra deposits in Kamchatka. Eighty-nine glass samples erupted from 11 volcanoes, representing 27 well-identified Holocene key-marker tephra layers, were analysed. The glass is rhyolitic in 21 tephra, dacitic in two, and multimodal in three.
Two tephra are mixed with glass compositions ranging from andesite/dacite to rhyolite. Tephra from the 11 eruptive centres are distinguished by their glass K2O,
CaO, and FeO contents. In some cases, individual tephra from volcanoes with multiple eruptions cannot be differentiated. Trace element compositions of 64 representative
bulk tephra samples erupted from 10 volcanoes were analysed by instrumental neutron activation analysis (INAA) as a pilot study to further refine the geochemical haracteristics; tephra from these volcanoes can be characterized using Cr and Th contents and La/Yb ratios.
Unidentified tephra collected at the islands of Karaginsky (3), Bering (11), and Attu (5) as well as Uka Bay (1) were correlated to known eruptions. Glass compositions and
trace element data from bulk tephra samples show that the Karaginsky Island and Uka Bay tephra were all erupted from the Shiveluch volcano. The 11 Bering Island tephra
are correlated to Kamchatka eruptions. Five tephra from Attu Island in the Aleutians are tentatively correlated with eruptions from the Avachinsky and Shiveluch volcanoes.
 L
Ladygin V.М., Girina O.A., Frolova Yu.V. Petrophysical features of lava flows from Bezymyannyi volcano, Kamchatka // Journal of Volcanology and Seismology. 2012. V. 6. № 6. P. 341-351. doi: 10.1134/S074204631206005X.    Annotation
This paper presents results from a study of lava flows that were discharged by Bezymyannyi Volcano at different times, from old (about 3500 years ago) to recent ones (1985–1989). We provide detailed descriptions of the composition, structure, and petrophysical properties for the main types of constituent rocks, which are andesites and basaltic andesites. It was found that porosity is the leading factor that controls rock properties, while the effects of structural and mineralogical features are less prominent. We demonstrate the variation in the properties of rocks that compose the lava flows in relation to their ages: the older a rock is, the higher its density and strength and the lower its porosity is.
Ladygin V.М., Girina O.A., Frolova Yu.V., Kondrashov I.A. The lava flows of Bezymianny volcano, Kamchatka // 4rd International Biennial Workshop on Subduction Processes emphasizing the Japan-Kurile-Kamchatka-Aleutian Arcs, Petropavlovsk-Kamchatsky, August 21-27, 2004. Petropavlovsk-Kamchatsky: IVS FED RAS. 2004. P. 63-64.
Lees J., Symons N., Chubarova O., Gorelchik V., Ozerov A. Tomographic Images of Klyuchevskoy Volcano P-Wave Velocity // Geophysical Monograph Series. // Volcanism and Subduction: The Kamchatka Region. 2007. V. 172. P. 293-302.    Annotation
Three-dimensional structural images of the P-wave velocity below the edifice of the great Klyuchevskoy group of volcanoes in central Kamchatka are derived via tomographic inversion. The structures show a distinct low velocity feature extending from around 20 km depth to 35 km depth, indicating evidence of magma ponding near the Moho discontinuity. The extensive low velocity feature represents, at least to some degree, the source of the large volume of magma currently erupting at the surface near the Klyuchevskoy group.
Lees J.M., Johnson J., Gordeev E.I., Batereau K., Ozerov A.Yu. Volcanic Explosions at Karymsky: A Broadband Experiment Around the cone // AGU Spring Meeting 1997 Abstracts. Baltimore, Maryland: AGU. 1997. P. S11C-06.
Lees J.M., Johnson J.B., Gordeev E.I., Ozerov A.Yu. Degassing explosion at Karymsky volcano, Kamchatka // Abstracts of international seismic volcanic workshop on Kamchatkan and Alaska-Aleutian island arcs, Petropavlovsk-Kamchatsky, July 1-9, 1998. 1998. P. 23
Lees J.M., Ozerov A.Yu., Gordeev E.I. Quasi-Periodic Eruptions on Karymsky Volcano, Kamchatka, 1996 // AGU Spring Meeting 1997 Abstracts. Baltimore, Maryland: AGU. 1997. P. V22A-05.
Levin V., Park J., Brandon M., Lees J., Peyton V., Gordeev E., Ozerov A. Crust and upper mantle of Kamchatka from teleseismic receiver functions // Tectonophysics. 2002. № 358. P. 233-256.    Annotation
Teleseismic receiver functions (RFs) from a yearlong broadband seismological experiment in Kamchatka reveal regional variations in the Moho, anisotropy in the supra-slab mantle wedge, and, along the eastern coast, Ps converted phases from the steeply dipping slab. We analyze both radial- and transverse-component RFs in bin-averaged epicentral and backazimuthal sweeps, in order to detect Ps moveout and polarity variations diagnostic of interface depth, interface dip, and anisotropic fabric within the shallow mantle and crust. At some stations, the radial RF is overprinted by near-surface resonances, but anisotropic structure can be inferred from the transverse RF. Using forward modeling to match the observed RFs, we find Moho depth to range between 30 and 40 km across the peninsula, with a gradational crust –mantle transition beneath some stations along the eastern coast. Anisotropy beneath the Moho is required to fit the transverse RFs at most stations. Anisotropy in the lower crust is required at a minority of stations. Modeling the amplitude and backazimuthal variation of the Ps waveform suggests that an inclined axis of symmetry and 5 – 10% anisotropy are typical for the crust and the shallow mantle. The apparent symmetry axes of the anisotropic layers are typically trench-normal, but trench-parallel symmetry axes are found for stations APA and ESS, both at the fringes of the central Kamchatka depression. Transverse RFs from east-coast stations KRO, TUM, ZUP and PET are fit well by two anisotropic mantle layers with trench-normal symmetry axes and opposing tilts. Strong anisotropy in the supraslab mantle wedge suggests that the mantle ‘‘lithosphere’’ beneath the Kamchatka volcanic arc is actively deforming, strained either by wedge corner flow at depth or by trenchward suction of crust as the Pacific slab retreats.





 

Recommended browsers for viewing this site: Google Chrome, Mozilla Firefox, Opera, Yandex. Using another browser may cause incorrect browsing of webpages.
 
Terms of use of IVS FEB RAS Geoportal materials and services

Copyright © Institute of Volcanology and Seismology FEB RAS, 2010-2019. Terms of use.
No part of the Geoportal and/or Geoportal content can be reproduced in any form whether electronically or otherwise without the prior consent of the copyright holder. You must provide a link to the Geoportal geoportal.kscnet.ru from your own website.
 
©Design: roman@kscnet.ru