Библиография
Вулкан:
Группировать:  
Выбрать:
Записей: 2744
 2023
Марченков В.В., Гирина О.А., Лупян Е.А., Уваров И.А. Система совместного анализа временных рядов наблюдений вулканической активности по данным низкоорбитальных и геостационарных спутников // Материалы 21-й Международной конференции «Современные проблемы дистанционного зондирования Земли из космоса. М.: ИКИ РАН. 2023. № XXI.B.486. https://doi.org/10.21046/21DZZconf-2023a.
Мельников Д.В., Калачева Е.Г. Динамика вод кратерного озера вулкана Малый Семячик за период 1999-2021 гг. по данным дистанционного зондирования // Вулканизм и связанные с ним процессы. Материалы XXVI ежегодной научной конференции, посвящённой Дню вулканолога, 30-31 марта 2023 г., Петропавловск-Камчатский. Петропавловск-Камчатский: ИВиС ДВО РАН. 2023. С. 58-61.
   Аннотация
На основе данных дистанционного зондирования за период с 1999 по 2021 гг. определены этапы изменения активности кратерного озера вулкана Малый Семячик. Показано, что изменение цветовой палитры поверхности озера является следствием изменения химического состава воды.
Хубуная С.А., Хубуная В.С., Максимов А.П. О смешении высокоглиноземистых и магнезиальных магм на вулкане Ключевской (Камчатка) // Вулканология и сейсмология. 2023. Т. 17. № 1. С. 21-31. doi: 10.31857/S020303062270002X.
Черкашин Р.И., Бергаль-Кувикас О.В., Чугаев А.В., Ларионова Ю.О., Биндеман И.Н., Хомчановский А.Л., Плутахина Е.Ю. Условия генерации и источники магм вершинного и побочного извержений вулкана Ключевской в 2020-2021 гг.: изотопно-геохимические (Sr-Nd-Pb-O) данные // Петрология. 2023. Т. 31. Вып. 3. С. 264-280. doi: 10.31857/S0869590323030032.
 2022
Bergal-Kuvikas Olga, Bindeman Ilya, Chugaev Andrey, Larionova Yulia, Perepelov Alexander, Khubaeva Olga Pleistocene-Holocene Monogenetic Volcanism at the Malko-Petropavlovsk Zone of Transverse Dislocations on Kamchatka: Geochemical Features and Genesis // Pure and Applied Geophysics. 2022. doi: 10.1007/s00024-022-02956-7.
Girina O.A., Malkovsky S.I., Sorokin A.A., Loupian E.A., Korolev S.P. Numerical Modeling of the Ash Cloud Movement from the Catastrophic Eruption of the Sheveluch Volcano in November 1964 // Remote Sensing. 2022. Вып. 14. № 3449. https://doi.org/10.3390/rs14143449.
   Аннотация
This paper reconstructs, for the first time, the motion dynamics of an eruptive cloud formed during the catastrophic eruption of the Sheveluch volcano in November 1964 (Volcanic Explosivity Index 4+). This became possible due to the public availability of atmospheric reanalysis data from the ERA-40 archive of the European Center for Medium-Range Weather Forecasts (ECMWF) and the development of numerical modeling of volcanic ash cloud propagation. The simulation of the eruptive cloud motion process, which was carried out using the FALL3D and PUFF models, made it possible to clarify the sequence of events of this eruption (destruction of extrusive domes in the crater and the formation of an eruptive column and pyroclastic flows), which lasted only 1 h 12 min. During the eruption, the ash cloud consisted of two parts: the main eruptive cloud that rose up to 15,000 m above sea level (a.s.l.), and the co-ignimbrite cloud that formed above the moving pyroclastic flows. The ashfall in Ust-Kamchatsk (Kamchatka) first occurred out of the eruptive cloud moving at a higher speed, then out of the co-ignimbrite cloud. In Nikolskoye (Bering Island, Commander Islands), ash fell only out of the co-ignimbrite cloud. Under the turbulent diffusion, the forefront of the main eruptive cloud rose slowly in the atmosphere and reached 16,500 m a.s.l. by 04:07 UTC on November 12. Three days after the eruption began, the eruptive cloud stretched for 3000 km over the territories of the countries of Russia, Canada, the USA, Mexico, and over both the Bering Sea and the Pacific Ocean. It is assumed that the well-known long-term decrease in the solar radiation intensity in the northern latitudes from 1963–1966, which was established according to the world remote sensing data, was associated with the spread of aerosol clouds formed not only by the Agung volcano, but those formed during the 1964 Sheveluch volcano catastrophic eruption
Girina O.A., Manevich A.G., Melnikov D.V., Nuzhdaev A.A., Romanova I.M., Loupian E.A., Sorokin A.A. The 2021 Activity of Kamchatkan Volcanoes and Danger to Aviation // EGU General Assembly 23–27 May, 2022. Vienna, Austria: 2022. № EGU22-1862. https://doi.org/10.5194/egusphere-egu22-1862.
Khubaeva Olga, Bergal-Kuvikas Olga, Sidorov M.D. The Formation and Recharge of the Verkhne-Yuriev Thermal Springs, Paramushir Island, Kuril Islands // Journal of Volcanology and Seismology. 2022. Vol. 3. P. 43-59. doi: 10.1134/S0742046322030034.
Nekrylov Nikolay, Kamenetsky V.S., Savelyev D.P., Gorbach N.V., Kontonikas-Charos Alkiviadis, Palesskii Stanislav V., Shcherbakov Vasily D., Kutyrev Anton V., Savelyeva O.L., Korneeva Alina, Kozmenko Olga A., Zelenski Michael E. Platinum-group elements in Late Quaternary high-Mg basalts of eastern Kamchatka: Evidence for minor cryptic sulfide fractionation in primitive arc magmas // Lithos. 2022. Vol. 412. № 106838. P. 1-14. https://doi.org/10.1016/j.lithos.2022.106608.
   Аннотация
The geochemical variations of magmas across and along supra-subduction zones (SSZ) have been commonly attributed to profound changes in the phase and chemical compositions of the mantle source and subduction-derived melt and fluid fluxes, as well as the physical parameters (e.g. depth, temperature, oxygen fugacity etc) of slab dehydration, mineral breakdown and melting. Here we test the variability of the Late Quaternary primitive magmas in the southern and northern parts of the meridionally oriented Eastern Volcanic Belt (EVB) of Kamchatka, with a slab depth varying from 60 to 160 km. Eight high-Mg (Mg# > 60 mol%) basalts were characterized for major, trace and platinum-group element (PGE) abundances, as well as the compositions of olivine phenocrysts and olivine-hosted spinel inclusions. The basalts in our study are geochemically typical of SSZ magmas and contain similar liquidus assemblages of forsteritic olivine (Mg# 78–92 mol%), low-Ti Cr-spinel and clinopyroxene. Although the absolute abundances of major and trace elements, and their ratios, in the basalts fluctuate to some extent, the observed variability cannot be correlated with any of considered parameters in the geometry of the Kamchatka SSZ and conditions of melting. This unexpected result led to the evaluation of the platinum-group element (PGE) systematics against the lithophile and chalcophile trace element geochemistry and the compositions of phenocrysts. Total whole-rock PGE content varies from 2.3 to 11.7 ppb, whereas the normalized PGE concentration patterns are typical for supra-subduction zones magmas and broadly similar in all studied samples. They are enriched in Rh, Pd and Pt relative to mid-ocean ridge basalts (MORB) and have nearly identical concentrations of Ir-group PGE. The only parameter that correlates well with PGE contents is the average Mg# of olivine phenocrysts from 84 to 90.3 mol%. This is interpreted to result from minor cryptic fractionation of sulfide melt, together with primitive olivine, in low-to-mid crustal conditions. Negative Ru anomalies on chondrite-normalized diagrams correspond to the Fe2+/Fe3+ ratios in spinel (a proxy for magma redox conditions), which reflects a replacement of monosulfide solid solution by laurite in the mantle wedge during oxidation.
Ostorero L., Balcone-Boissard H., Boudon G., Shapiro N., Belousov A., Belousova M., Droznina S. Correlated petrology and seismicity indicate rapid magma accumulation prior to eruption of Kizimen volcano, Kamchatka // Communications Earth & Environment. 2022. Vol. 3. № 290. P. 1-14. https://doi.org/10.1038/s43247-022-00622-3.