Библиография
Вулкан:
Группировать:  
Выбрать:
Записей: 2743
 2017
Озеров А.Ю. К вопросу о механизмах базальтового-андезибазальтового и андезитового-дацитового типов извержений // Материалы XX региональной научной конференции «Вулканизм и связанные с ним процессы», посвящённой Дню вулканолога, 30-31 марта 2017 г. Петропавловск-Камчатский: ИВиС ДВО РАН. 2017. С. 70-73.
   Аннотация
На основании систематизации и анализа вулканологических, петрологических и экспериментальных данных установлено, что разнообразие извержений, наблюдаемых на Камчатке, обусловлено двумя принципиально разными эруптивными моделями: газогидродинамической – для жидких базальт-андезибазальтовых магм и вязкоупругодинамической – для малоподвижных андезитовых-дацитовых магм.
Рашидов В.А., Аникин Л.П. Полевые работы на вулкане Алаид (о. Атласова, Курильские острова) в 2017 году // Вестник КРАУНЦ. Серия: Науки о Земле. 2017. Вып. 35. № 3. С. 112-117.
   Аннотация
Полевые работы на вулкане Алаид (о. Атласова, Курильские острова) в 2017 году
Рашидов В.А., Пилипенко О.В., Петрова В.В. Особенности минерального состава и петромагнитные свойства пород подводного вулкана Минами-Хиоси (Марианская островная дуга) // Тихоокеанская геология. 2017. Вып. 36. № 5. С. 29-43.
   Аннотация
Впервые выполнены комплексные исследования минерального состава и петромагнитных свойств горных пород, слагающих постройку подводного вулкана Минами-Хиоси, расположенного в Марианской островной дуге. Вулкан Минами-Хиоси входит в состав вулканического комплекса Хиоси в щелочной провинции Идзу-Бонинской и Марианской островных дуг. Все проанализированные породы обогащены К2О (1.34-3.30 %), Ва - 370-806 ppm, Sr - 204-748 ppm. Базальты имеют порфировую структуру. Вкрапленники - главным образом оливин, его отдельные кристаллы или их сростки, размером до 2 см, основная масса - тонкокристаллическая. В изученных образцах присутствуют не менее трех Fe-содержащих оксидных минералов. Это преобладающий титаномагнетит, в меньшем количестве - ильменит и гидроксиды Fe. Установлено, что изученные образцы в основном магнитно изотропны, имеют высокие значения естественной остаточной намагниченности и фактора Кенигсбергера. Как и в других островодужных позднекайнозойских подводных вулканах западной части Тихого океана, изученные образцы сильно дифференцированы по величине естественной остаточной намагниченности и магнитной восприимчивости. Основными носителями намагниченности являются как низкокоэрцитивные магнитные минералы (титаномагнетит и магнетит) псевдооднодоменной структуры, так и высококоэрцитивные (гематит). Высокие величины естественной остаточной намагниченности обусловлены псевдооднодоменной структурой зерен титаномагнетита, а высокие значения магнитной восприимчивости - большой концентрацией ферромагнитных зерен.
Рыбин А.В., Чибисова М.В., Дегтерев А.В. Активность вулканов Курильских островов в 2016 г. // Вестник КРАУНЦ. Серия: Науки о Земле. 2017. Вып. 33. № 1. С. 83-88.
   Аннотация
Приводятся данные, характеризующие активность вулканов Курильских островов в 2016 г. Рассмотрены извержения вулканов Алаид (о. Атласова), Эбеко, Чикурачки (о. Парамушир), Чиринкотан (о. Чиринкотан,) и Сноу (о. Чирпой).
Рыбин А.В., Чибисова М.В., Дегтерев А.В., Гурьянов В.Б. Вулканическая активность на Курильских островах в XXI веке // Вестник ДВО РАН. 2017. № 1. С. 51-61.
   Аннотация
Представлены данные, характеризующие активность вулканов Курильской островной дуги в XXI в. Рассмотрены вулканические извержения на вулканах Чикурачки, Чиринкотан, Эбеко, Пик Сарычева, Экарма, Иван Грозный, Алаид, Сноу. Усиление парогазовой активности отмечалось на вулканах Синарка (о-в Шиашкотан), Берга (о-в Уруп), Пик Севергина (о-в Харимкотан) и Кудрявый (о-в Итуруп). Показано, что преобладали непродолжительные (от нескольких часов до нескольких дней) эксплозивные извержения слабой и умеренной силы (VEI = 0–3). Наиболее активными вулканами были Чикурачки (8 событий) и Эбеко (4 события) (о-в Парамушир). Самым сильным за рассматриваемый период было эксплозивно-эффузивное извержение влк. Пик Сарычева в 2009 г., наиболее продолжительным – эффузивное извержение влк. Сноу (о-в Чирпой) в 2012–2016 гг. Общий объем изверженного материала за 2000–2016 гг. не превышает 0,3–0,4 км3.
Рычагов С.Н., Сандимирова Е.И., Сергеева А.В., Нуждаев И.А. Состав пепла вулкана Камбальный (извержение 2017 г.) // Вестник КРАУНЦ. Серия: Науки о Земле. 2017. Вып. 36. № 4. С. 13-27.
   Аннотация
На основании комплексных исследований получены данные о гранулометрическом, химическом и минеральном составах пепла вулкана Камбальный, извержение которого произошло в марте–апреле 2017 г.
Установлено, что пепел является резургентным и состоит из гидротермально измененных андезитов Камбального хребта, подстилающих вулкан. Предполагается, что сейсмическая подготовка к извержению и эксплозивное извержение вулкана Камбальный в 2017 г. обусловлены активизацией газо-гидротермальных процессов в породах фундамента Камбального хребта.
Сорокин А.А., Гирина О.А., Лупян Е.А., Мальковский С.И., Балашов И.В., Ефремов В.Ю., Крамарева Л.С., Королев С.П., Романова И.М., Симоненко Е.В. Спутниковые наблюдения и результаты численного моделирования для комплексного анализа распространения пепловых облаков во время эксплозивных извержений вулканов Камчатки // Метеорология и гидрология. 2017. № 12. С. 25-34.
   Аннотация
Пепловые облака, возникающие в результате эксплозивных извержений вулканов, представляют реальную угрозу для жизнедеятельности человека (для полетов воздушных судов, работы аэродромов и т.д.), поэтому обнаружение, отслеживание и прогноз их перемещения актуальны и важны. Описаны возможности и примеры применения нового инструмента, созданного на базе информационной системы “Мониторинг активности вулканов Камчатки и Курил” (VolSatView). Он позволяет решать задачи комплексного мониторинга и прогноза распространения пепловых облаков с помощью данных дистанционного зондирования и результатов математического моделирования, а также оценить параметры эксплозивных событий.
Толбачинское трещинное извержение 2012−2013 гг. (ТТИ-50) / Отв. ред. Гордеев Е.И., Добрецов Н.Л. Новосибирск: Изд-во СО РАН. 2017. 421 с.
   Аннотация
В настоящей монографии представлены результаты комплексных исследований Толбачинского трещинного извержения 2012−2013 гг. (ТТИ-50). Экспедиционными отрядами Института вулканологии и сейсмологии ДВО РАН с участием других институтов и Геофизической службы
РАН проводились наблюдения за ходом извержения, отбирались образцы изверженных продуктов, с помощью спутниковых наблюдений и аэрофотосъемки оценивались развитие лавовых потоков и их объем. Непрерывные сейсмические наблюдения и данные GPS станций позволили
оценить деформационные процессы, связанные с извержением.
В монографии подробно рассматриваются обобщенная вулкано-тектоническая позиция Ключевской группы вулканов и Толбачинского вулканического массива, развитие сейсмичности и деформационных процессов, предшествующих и сопровождавших ТТИ-50. Проведено детальное исследование вещественного состава продуктов извержения. Предыдущее трещинное извержение в этой зоне произошло в 1975−1976 гг. и было детально изучено различными методами, но за 36 лет появились новые технологии, которые позволили исследовать ТТИ-50 на современном уровне. Дистанционные исследования содержания газа в вулканических облаках, спутниковые наблюдения за распространением пепловых выбросов и лавовых потоков, а также инфракрасная съемка лавовых полей и активных кратеров и синвулканические геохимические и петрологические исследования дали возможность детально реконструировать весь процесс извержения.
Изучение изменения вещественного состава продуктов извержения ТТИ-50 во времени показало, что в начале извержения была дренирована верхняя, более остывшая и фракционированная, часть магматического очага. В последующем на поверхность начали поступать расплавы из более глубинных частей очага; геохимически это выразилось в смене состава пород. Детальное строение среды под Толбачинским вулканическим массивом было получено по данным наблюдения 30 сейсмических станций, специально установленных для исследования скоростной структуры. Сейсмотомографическая модель определяет несколько каналов питания вулкана ПлоскийТолбачик и ареальной зоны шлаковых конусов на Толбачинском доле. По предварительным данным определена взаимосвязь между глубинными зонами питания вулканов Ключевской, Безымянный и Толбачик.
Результаты, представленные в монографии, позволят сделать важные обобщения по механизму подобных извержений, строению коры и мантии под Ключевской группой вулканов и определению сложной системы магматического питания Толбачинского вулканического массива,связанной с общими особенностями Камчатской зоны субдукции.
Книга адресована специалистам в области петрологии, геологии, геофизики вулканизма, студентам и аспирантам соответствующих специальностей.
Флеров Г.Б., Чурикова Т.Г., Ананьев В.В. Вулканический массив Плоских Сопок: геология, петрохимия, минералогия и петрогенезис пород (Ключевская группа вулканов, Камчатка) // Вулканология и сейсмология. 2017. № 4. С. 30-47. doi: 10.7868/S0203030617040022.
   Аннотация
Рассматриваются геологическая история и петрология крупного полигенного вулканического сооружения верхнеплейстоцен-голоценового времени. Этот долгоживущий вулканический центр знаменателен совместным проявлением магм базальтового и трахибазальтового составов, представленных базальт-андезитовой и трахибазальт-трахиандезитовой сериями. Делается вывод о генетической автономности сосуществующих родительских магм, генерированных в разных глубинных источниках области верхней мантии. Разнообразие составов вулканитов обязано многостадийной пространственно-временной кристаллизационной дифференциации магм и смешению последних в промежуточных очагах.
Чебров Д.В., Фирстов П.П., Сенюков С.Л., Близнецов В.Е., Воропаев П.В., Гарбузова В.Т., Дрознина С.Я., Кожевникова Т.Ю., Кугаенко Ю.А., Назарова З.А., Нуждина И.Н., Салтыков В.А., Серафимова Ю.К., Сероветников С.С., Соболевская О.В. Активность вулкана Безымянный (Камчатка) в 2016−2017 гг. // Вестник КРАУНЦ. Серия: Науки о Земле. 2017. Вып. 33. № 1. С. 5-11.
   Аннотация
О системе сбора и обработки сейсмологической информации КФ ФИЦ ЕГС РАН