Main Bibliography
 
 Bibliography
Volcano:

 
Records: 2089
Pages:  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
Park J., Levin V., Brandon M., Lees J., Peyton V., Gordeev E., Ozerov A. A dangling slab, amplified arc volcanism, mantle flow, and seismic anisotropy in the Kamchatka plate corner // AGU Geodynamics Series. // Plate Boundary Zones. 2002. V. 30. P. 295-324.
Pendea Ionel Florin, Ponomareva Vera, Bourgeois Joanne, Zubrow Ezra B.W., Portnyagin Maxim, Ponkratova Irina, Harmsen Hans, Korosec Gregory Late Glacial to Holocene paleoenvironmental change on the northwestern Pacific seaboard, Kamchatka Peninsula (Russia) // Quaternary Science Reviews. 2017. V. 157. P. 14-28. doi:10.1016/j.quascirev.2016.11.035.    Annotation
We used a new sedimentary record from a small kettle wetland to reconstruct the Late Glacial and Holocene vegetation and fire history of the Krutoberegovo-Ust Kamchatsk region in eastern Kamchatka Peninsula (Russia). Pollen and charcoal data suggest that the Late Glacial landscape was dominated by a relatively fire-prone Larix forest-tundra during the Greenland Interstadial complex (GI 1) and a subarctic steppe during the Younger Dryas (GS1). The onset of the Holocene is marked by the reappearance of trees (mainly Alnus incana) within a fern and shrub dominated landscape. The Holocene Thermal Maximum (HTM) features shifting vegetational communities dominated by Alnus shrubs, diverse forb species, and locally abundant aquatic plants. The HTM is further defined by the first appearance of stone birch forests (Betula ermanii) – Kamchatka's most abundant modern tree species. The Late Holocene is marked by shifts in forest dynamics and forest-graminoid ratio and the appearance of new non-arboreal taxa such as bayberry (Myrica) and meadow rue (Filipendula). Kamchatka is one of Earth's most active volcanic regions. During the Late Glacial and Holocene, Kamchatka's volcanoes spread large quantities of tephra over the study region. Thirty-four tephra falls have been identified at the site. The events represented by most of these tephra falls have not left evidence of major impacts on the vegetation although some of the thicker tephras caused expansion of grasses (Poaceae) and, at least in one case, forest die-out and increased fire activity.
Pevzner M.M. Holocene volcanism of Northern Kamchatka: The spatiotemporal aspect // Doklady Earth Sciences. 2006. Т. 409. № 2. С. 884-887. doi: 10.1134/S1028334X06060109.
Pevzner M.M. New data on Holocene monogenetic volcanism of the Northern Kamchatka: ages and space distribution // Abstracts. 4rd Biennial Workshop on Subduction Processes emphasizing the Kurile-Kamchatka-Aleutian Arcs (JKASP-4). Linkages among tectonics, seismicity, magma genesis, and eruption in volcanic arcs. August 21-27, 2004. Petropavlovsk-Kamchatsky: Institute of Volcanology and Seismology FEB RAS. 2004. С. 72-76.
Pevzner M.M. The First Geological Data on the Chronology of Holocene Eruptive Activity in the Ichinskii Volcano (Sredinnyi Ridge, Kamchatka) // Doklady Earth Sciences. 2004. V. 395A. № 3. P. 335-337.
Piip B.I. Kronotzk ignimbrites in Kamchatka // Bulletin of Volcanology. 1963. V. 25. № 1. P. 31-32. doi: 10.1007/BF02596535.
Piip B.I., Tonani F., Suehiro C. Report of the UNESCO volcanological mission to Indonesia in 1963 // Bulletin UNESCO. 1964.
Plechov Pavel, Blundy Jon, Nekrylov Nikolay, Melekhova Elena, Shcherbakov Vasily, Tikhonova Margarita S. Petrology and volatile content of magmas erupted from Tolbachik Volcano, Kamchatka, 2012–13 // Journal of Volcanology and Geothermal Research. 2015. V. 307. P. 182 - 199. doi: 10.1016/j.jvolgeores.2015.08.011.    Annotation
Abstract We report petrography, and bulk rock, mineral and glass analyses of eruptive products of the 2012–13 eruption of Tolbachik volcano, Central Kamchatka Depression, Russia. Magmas are shoshonitic in composition, with phenocrysts of olivine and plagioclase; clinopyroxene phenocrysts are scarce. Samples collected as bombs from the active vent, from liquid lava at the active lava front, and as naturally solidified “toothpaste” lava allow us to quantify changes in porosity and crystallinity that took place during 5.25 km of lava flow and during solidification. Olivine-hosted melt inclusions from rapidly-cooled, mm-size tephra have near-constant {H2O} contents (1.19 ± 0.1 wt) over a wide range of {CO2} contents (< 900 ppm), consistent with degassing. The groundmass glasses from tephras lie at the shallow end of this degassing trend with 0.3 wt {H2O} and 50 ppm CO2. The presence of small saturation, rather than shrinkage, bubbles testifies to volatile saturation at the time of entrapment. Calculated saturation pressures are 0.3 to 1.7 kbar, in agreement with the depths of earthquake swarms during November 2012 (0.6 to 7.5 km below the volcano). Melt inclusions from slowly-cooled and hot-collected lavas have {H2O} contents that are lower by an order of magnitude than tephras, despite comparable {CO2} contents. We ascribe this to diffusive {H2O} loss through olivine host crystals during cooling. The absence of shrinkage bubbles in the inclusions accounts for the lack of reduction in dissolved {CO2} (and S and Cl). Melt inclusions from tephras experienced < 3 wt post-entrapment crystallisation. Melt inclusion entrapment temperatures are around 1080 °C. Compared to magmas erupted elsewhere in the Kluchevskoy Group, the 2012–13 Tolbachik magmas appear to derive from an unusually H2O-poor and K2O-rich basaltic parent.
Ponomareva V., Kyle P., Pevzner M., Sulerzhitsky L., Hartman M. Holocene eruptive history of Shiveluch Volcano, Kamchatka Peninsula, Russia // Geophysical Monograph Series. // Volcanism and Subduction: The Kamchatka Region. 2007. V. 172. P. 263-282. № doi:10.1029/172GM19.    Annotation
The Holocene eruptive history of Shiveluch volcano, Kamchatka Peninsula, has been reconstructed using geologic mapping, tephrochronology, radiocarbon dating, XRF and microprobe analyses. Eruptions of Shiveluch during the Holocene have occurred with irregular repose times alternating between periods of explosive activity and dome growth. The most intense volcanism, with frequent large and moderate eruptions occurred around 6500–6400 BC, 2250–2000 BC, and 50–650 AD, coincides with the all-Kamchatka peaks of volcanic activity. The current active period started around 900 BC; since then the large and moderate eruptions has been following each other in 50–400 yrs-long intervals. This persistent strong activity can be matched only by the early Holocene one.
Most Shiveluch eruptions during the Holocene produced medium-K, hornblendebearing andesitic material characterized by high MgO (2.3–6.8 wt %), Cr (47–520 ppm), Ni (18–106 ppm) and Sr (471–615 ppm), and low Y (> 18 ppm). Only two mafic tephras erupted about 6500 and 2000 BC, each within the period of most intense activity.
Many past eruptions from Shiveluch were larger and far more hazardous then the historical ones. The largest Holocene eruption occurred ∼1050 AD and yielded >2.5 km3 of tephra. More than 10 debris avalanches took place only in the second half of the Holocene. Extent of Shiveluch tephra falls exceeded 350 km; travel distance of pyroclastic density currents was > 22 km, and that of the debris avalanches ≤20 km.
Ponomareva V.V., Churikova T., Melekestsev I.V., Braitseva O.A., Pevzner M., Sulerzhitskii L. Late Pleistocene - Holocene Volcanism on the Kamchatka Peninsula, Northwest Pacific Region // Volcanism and Subduction: The Kamchatka Region. 2007. V. 172. P. 165-198. № 10.1029/172GM15.    Annotation
Late Pleistocene-Holocene volcanism in Kamchatka results from the subduction of the
Pacific Plate under the peninsula and forms three volcanic belts arranged in en echelon manner
from southeast to northwest. The cross-arc extent of recent volcanism exceeds 250 km and
is one of the widest worldwide. All the belts are dominated by mafic rocks. Eruptives with
SiO2>57% constitute ~25% of the most productive Central Kamchatka Depression belt and
~30% of the Eastern volcanic front, but <10% of the least productive Sredinny Range belt.
All the Kamchatka volcanic rocks exhibit typical arc-type signatures and are represented
by basalt-rhyolite series differing in alkalis. Typical Kamchatka arc basalts display a strong
increase in LILE, LREE and HFSE from the front to the back-arc. La/Yb and Nb/Zr increase
from the arc front to the back arc while B/Li and As, Sb, B, Cl and S concentrations decrease.
The initial mantle source below Kamchatka ranges from N-MORB-like in the volcanic front
and Central Kamchatka Depression to more enriched in the back arc. Rocks from the Central
Kamchatka Depression range in 87Sr/86Sr ratios from 0.70334 to 0.70366, but have almost
constant Nd isotopic ratios (143Nd/144Nd 0.51307–0.51312). This correlates with the highest
U/Th ratios in these rocks and suggest the highest fluid-flux in the source region.
Holocene large eruptions and eruptive histories of individual Holocene volcanoes have been
studied with the help of tephrochronology and 14C dating that permits analysis of time-space
patterns of volcanic activity, evolution of the erupted products, and volcanic hazards.





 

Recommended browsers for viewing this site: Google Chrome, Mozilla Firefox, Opera, Yandex. Using another browser may cause incorrect browsing of webpages.
 
Terms of use of IVS FEB RAS Geoportal materials and services

Copyright © Institute of Volcanology and Seismology FEB RAS, 2010-2019. Terms of use.
No part of the Geoportal and/or Geoportal content can be reproduced in any form whether electronically or otherwise without the prior consent of the copyright holder. You must provide a link to the Geoportal geoportal.kscnet.ru from your own website.
 
©Design: roman@kscnet.ru