Библиография
Вулкан:
Группировать:  
Выбрать:     Все     "     0     1     2     3     4     5     7     A     B     C     D     E     F     G     H     I     K     L     M     N     O     P     Q     R     S     T     U     V     W          А     Б     В     Г     Д     Е     Ж     З     И     К     Л     М     Н     О     П     Р     С     Т     У     Ф     Х     Ц     Ч     Ш     Щ     Э     Ю     Я     
Записей: 47
Страницы:  1 2 3 4 5
 M
Monitoring the Thermal Activity of Kamchatkan Volcanoes during 2015–2022 Using Remote Sensing (2023)
Girina O.A., Manevich A.G., Loupian E.A., Uvarov I.A., Korolev S.P., Sorokin A.A., Romanova I.M., Kramareva L.S., Burtsev M.A. Monitoring the Thermal Activity of Kamchatkan Volcanoes during 2015–2022 Using Remote Sensing // Remote Sensing. 2023. Vol. 15. Vol. 19. № 4775. https://doi.org/10.3390/rs15194775.
   Аннотация
The powerful explosive eruptions with large volumes of volcanic ash pose a great danger to the population and jet aircraft. Global experience in monitoring volcanoes and observing changes in the parameters of their thermal anomalies is successfully used to analyze the activity of volcanoes and predict their danger to the population. The Kamchatka Peninsula in Russia, with its 30 active volcanoes, is one of the most volcanically active regions in the world. The article considers the thermal activity in 2015–2022 of the Klyuchevskoy, Sheveluch, Bezymianny, and Karymsky volcanoes, whose rock composition varies from basaltic andesite to dacite. This study is based on the analysis of the Value of Temperature Difference between the thermal Anomaly and the Background (the VTDAB), obtained by manual processing of the AVHRR, MODIS, VIIRS, and MSU-MR satellite data in the VolSatView information system. Based on the VTDAB data, the following “background activity of the volcanoes” was determined: 20 °C for Sheveluch and Bezymianny, 12 °C for Klyuchevskoy, and 13–15 °C for Karymsky. This study showed that the highest temperature of the thermal anomaly corresponds to the juvenile magmatic material that arrived on the earth’s surface. The highest VTDAB is different for each volcano; it depends on the composition of the eruptive products produced by the volcano and on the character of an eruption. A joint analysis of the dynamics of the eruption of each volcano and changes in its thermal activity made it possible to determine the range of the VTDAB for different phases of a volcanic eruption.
Monogenetic cones of Klyuchevskaya group of volcanoes (Kamchatka, Russia) (2020)
Girina O.A., Ladygin V.М. Monogenetic cones of Klyuchevskaya group of volcanoes (Kamchatka, Russia) // Abstract volume of the 8th International Maar Conference. Petropavlovsk-Kamchatsky: IVS FEB RAS. 2020. P. 56-57.
Morphological Development of the Volcanic Islet Taketomi in the Kuriles (1934)
Tanakadate H. Morphological Development of the Volcanic Islet Taketomi in the Kuriles // Proceedings of the Imperial Academy. 1934. Vol. 10. № 8. P. 494-497. doi: 10.2183/pjab1912.10.494.
Morphometric and morphological development of Holocene cinder cones: A field and remote sensing study in the Tolbachik volcanic field, Kamchatka (2011)
Inbar Moshe, Gilichinsky Michael, Melekestsev Ivan, Melnikov Dmitry, Zaretskaya Natasha Morphometric and morphological development of Holocene cinder cones: A field and remote sensing study in the Tolbachik volcanic field, Kamchatka // Journal of Volcanology and Geothermal Research. 2011. Vol. 201. P. 301-310.
Morphometric measurements of cinder cones from digital elevation models of Tolbachik volcanic field, central Kamchatka (2010)
Gilichinsky Michael, Melnikov Dmitry, Melekestsev Ivan, Zaretskaya Natasha, Inbar Moshe Morphometric measurements of cinder cones from digital elevation models of Tolbachik volcanic field, central Kamchatka // Canadian Journal of Remote Sensing. 2010. Vol. 36. Vol. 4. P. 287-300.
Most recent fall deposits of Ksudach Volcano, Kamchatka, Russia (1993)
Bursik M., Melekestsev I.V., Braitseva O.A. Most recent fall deposits of Ksudach Volcano, Kamchatka, Russia // Geophysical Research Letters. 1993. Vol. 20. № 17. P. 1815-1818. doi: 10.1029/93GL01269.
   Аннотация
Three of four Plinian eruptions from Ksudach Volcano are among the four largest explosive eruptions in southern Kamchatka during the past 2000 years. The earliest of the eruptions was voluminous and was accompanied by an ignimbrite and the fifth and most recent caldera collapse event at Ksudach. The isopach pattern is consistent with a column height of 23 km. The three more recent and smaller eruptions were from the Shtyubel' Cone, within the fifth caldera. Using isopach and grain size isopleth patterns, column heights ranged from ≥ 10 to 22 km. Although the oldest eruption may have produced a large acidity peak in the Greenland ice, the three Shtyubel' events may not be related to major acid deposition. Thus it is possible that few if any of the uncorrelated acidity peaks of the past 2000 years in Greenland ice cores result from eruptions in southern Kamchatka.
Multiple edifice failures, debris avalanches and associated eruptions in the Holocene history of Shiveluch volcano, Kamchatka, Russia (1999)
Belousov Alexander, Belousova Marina, Voight Barry Multiple edifice failures, debris avalanches and associated eruptions in the Holocene history of Shiveluch volcano, Kamchatka, Russia // Bulletin of Volcanology. 1999. Vol. 61. № 5. P. 324-342. doi:10.1007/s004450050300.