Bibliography
Volcano:
Group by:  
Jump to:
Records: 2337
 2019
Kamenetsky V.S., Belousov A.B., Sharygin V.V., Zhitova L.M., Ehrig K., Zelensky M. High-temperature gold-copper extraction with chloride flux in lava tubes of Tolbachik volcano (Kamchatka) // Terra Nova. 2019. Vol. 31. № 6. P. 511-517. doi: 10.1111/ter.12420.
Mania Rene, Walter Thomas, Belousova Marina, Belousov Alexander, Senyukov Sergey Deformations and Morphology Changes Associated with the 2016–2017 Eruption Sequence at Bezymianny Volcano, Kamchatka // Remote Sensing. 2019. № 11. P. 1278 doi: 10.3390/rs11111278.
Арсанова Г.И. Роль воды в вулканизме // Вулканология и сейсмология. 2019. № 4. С. 69-80. doi: 10.31857/S0203-03062019469-80.    Annotation
Вода играет в вулканизме чрезвычайно важную роль: она действует как эвакуатор вязких расплавов разнообразными способами, что обеспечивается наличием соответствующих свойств у ее фазовых состояний, последовательно сменяющихся с падением параметров среды. В этом смысле особенно значимо сверхкритическое (флюидное) состояние воды. В работе дается сводка свойств флюидов, которые во многом уникальны. Свойства определяют взаимоотношения водного флюида и силикатного расплава, что в свою очередь, объясняет причину вулканических явлений и сам ход извержений: взрывы разной мощности, возникновение так называемой псевдоожиженной массы, палящих туч, оползней и прорывов на склонах, образование игнимбритов, а также механизм переноса газов к подножью вулканов. Как по роли, так и по количеству, вода - основное вулканическое вещество, которое вместе с силикатным расплавом составляет магму.

Water plays an extremely important role in volcanism: it acts as an evacuator of viscous melts in a variety of ways, which is ensured by the presence of relevant properties of its phase states, which successively changing with the fall of the environmental parameters. In this sense, the supercritical (fluid) state of water is especially significant. The paper provides a summary of fluid properties that are unique in many ways. The properties determine the relationship between water fluid and silicate melt, which in turn explains the cause of volcanic phenomena and the course of eruptions: explosions of different power, the emergence of the so-called fluidized mass, scorching clouds, landslides and breakthroughs on the slopes, the formation of ignimbrites, as well as the mechanism of gas transport to the foot of volcanoes. Both by role and quantity, water is the main volcanic substance, which together with the silicate melt constitutes magma.
Белоусов А.Б., Белоусова М.Г. Морфология, закономерности формирования и остывания лавовых труб извержения вулкана Толбачик 2012-2013 гг. // Материалы XXII региональной научной конференции «Вулканизм и связанные с ним процессы». 2019. С. 36-39.
Бергаль-Кувикас О.В., Bouvet De Maisonneuve Caroline Проблема идентификации маркирующих горизонтов тефры кальдерообразующих извержений Юго-Восточной Азии // ВУЛКАНИЗМ И СВЯЗАННЫЕ С НИМ ПРОЦЕССЫ Материалы XXII Всероссийской научной конференции, посвященной ДНЮ ВУЛКАНОЛОГА. 28-30 марта 2019 г., Петропавловск-Камчатский. 2019. С. 40-43.
Блох Ю.И., Бондаренко В.И., Долгаль А.С., Новикова П.Н., Петрова В.В., Пилипенко О.В., Рашидов В.А., Трусов А.А. Комплексные геолого-геофизические исследования подводного вулканического массива Архангельского (Курильская островная дуга) // Вестник КРАУНЦ. Серия: Науки о Земле. 2019. Вып. 44. № 4. С. 35-50. doi: 10.31431/1816-5524-2019-4-44-35-50.    Annotation
Приводятся результаты комплексных геолого-геофизических исследований подводного вулканического массива Архангельского, расположенного в проливе Буссоль в центральной части Курильской островной дуги. Массив состоит из слившихся между собой и срезанных абразией вулканических построек. Массив слагают эндогенные базальты и экзогенные туфы. Породы и минералы, за исключением кварца, гидротермально изменены, причем изменения происходили не до, а после образования туфа. Высокие значения естественной остаточной намагниченности драгированных горных пород обусловлены большим содержанием однодоменных и псевдооднодоменных зерен титаномагнетита и магнетита. Образование массива Архангельского, вероятнее всего, происходило в периоды глобальных геомагнитных возмущений. В постройке массива выделены подводящие каналы субвертикального и юго-восточного простираний и магнитовозмущающие блоки с разными геометрическими и магнитными характеристиками, а на глубинах 1100–1200 м выявлен периферический магматический очаг. У юго-юго-восточного подножия массива идентифицированы крупные оползневые блоки.

The article presents the results of integrated geologic-geophysical investigation of the Arkhangelsky submarine volcanic massif, which is located in the Bussol Strait in the central zone of the Kurile Island Arc. The massif consists of amalgamated and eroded volcanic edifices and is built up of endogenous basalts and exogenous tuffs. Rocks and minerals to the exclusion of quartz are hydrothermally altered; moreover they were altered after the formation of tuff. High values of the natural remnant magnetization of dredged rocks are caused by the high content of single-domain and pseudo-single-domain grains of titanomagnetite and magnetite. The Arkhangelsky massif most likely was formed during periods of global geomagnetic disturbances. The authors have revealed feeders of the near-vertical and southeastern trends and causative magnetic blocks with different geometric and magnetic characteristics in the edifice of the massif. A peripheral magma chamber has been revealed between depths of 1100–1200 m. At the southeast foot of the massif we found large landslide blocks.
Гирина О.А., Лупян Е.А., Крамарева Л.С., Мельников Д.В., Маневич А.Г., Сорокин А.А., Гордеев Е.И., Уваров И.А., Кашницкий А.В., Бурцев М.А., Марченков В.В., Мазуров А.А., Константинова А.М., Романова И.М., Мальковский С.И., Королев С.П. Информационная система "Дистанционный мониторинг активности вулканов Камчатки и Курил" (ИС VolSatView): возможности и опыт работы // Информационные технологии в дистанционном зондировании Земли - RORSE 2018. Электронный сборник статей 16-й конференции (12-16 ноября 2018 г., Москва, Россия) (2019 г.). М.: ИКИ РАН. 2019. С. 359-366. https://doi.org/10.21046/rorse2018.359.    Annotation
В 2011 году была создана информационная система ―Дистанционный мониторинг активности вулканов Камчатки и Курил (ИС VolSatView)‖. Эта система предоставляет специалистам доступ к различной информации, включая долговременные архивы данных ДЗЗ, необходимой для решения задач дистанционного мониторинга вулканической активности, при этом требуется лишь наличие web-браузера. С момента запуска системы непрерывно расширялся перечень доступных в ней данных, а также инструментов их анализа. К настоящему времени накоплен опыт ежедневного использования системы специалистами-вулканологами. Настоящая статья рассказывает об актуальном состоянии системы, включая такие новые разработки как определение высоты пепловых шлейфов, развитие инструментов анализа временных рядов данных, создание специализированных продуктов обработки данных.

The information system "Remote monitoring of Kamchatka and Kuril Islands volcanic activity" (VolSatView IS) was created in 2011. The system provides specialists with access to a variety of information, including long-term archives of remote sensing data needed for remote monitoring of volcanic activity, requiring only a web browser to use the system. Since the launch of the system, the list of available data, as well as tools for their analysis, has been continuously expanding. By now, there is a lot of experience in daily use of the system by the specialists in volcanology. This article describes the current state of the system, including recent developments, such as determination of the height of ash plumes, improvement of the time series analysis tools, implementation of specialized data processing products.
Гирина О.А., Лупян Е.А., Мельников Д.В., Кашницкий А.В., Уваров И.А., Бриль А.А., Константинова А.М., Бурцев М.А., Маневич А.Г., Гордеев Е.И., Крамарева Л.С., Сорокин А.А., Мальковский С.И., Королев С.П. Создание и развитие информационной системы «Дистанционный мониторинг активности вулканов Камчатки и Курил» // Современные проблемы дистанционного зондирования Земли из космоса. 2019. Т. 16. № 3. С. 249-265. doi: 10.21046/2070-7401-2019-16-3-249-265.    Annotation
В 2011 г. совместно с экспертами Института вулканологии и сейсмологии ДВО РАН (ИВиС ДВО РАН), Института космических исследований РАН (ИКИ РАН), Дальневосточного центра НИЦ «Планета» (ДЦ НИЦ «Планета») и Вычислительного центра ДВО РАН (ВЦ ДВО РАН) была создана первая версия информационной системы «Дистанционный мониторинг активности вулканов Камчатки и Курил» (ИС VolSatView). Система предоставляет специалистам информацию для решения задач дистанционного мониторинга вулканической активности, включая оперативные и долговременные архивы данных дистанционного зондирования Земли. Созданы различные веб-интерфейсы, которые позволяют получать доступ к распределённым архивам данных и вычислительным ресурсам, необходимым для их анализа и обработки. При этом для работы с системой не требуется специализированных настольных приложений, пользователям достаточно иметь веб-браузер и подключение к сети Интернет. С момента ввода в эксплуатацию ИС VolSatView велось постоянное расширение её возможностей, связанное как с объёмом и составом информации, поступающей в систему, так и с развитием инструментов её анализа, в том числе позволяющих проводить моделирование процессов распространения пепловых шлейфов. К настоящему времени накоплен достаточно большой опыт использования системы специалистами-вулканологами для решения задач постоянного оперативного мониторинга вулканической активности Камчатки и Курил, а также изучения вулканов. Работа посвящена описанию текущих возможностей ИС VolSatView, которые были реализованы в системе в последние годы, в том числе для определения высоты пепловых шлейфов и анализа временных рядов данных.

In 2011, the experts of the Institute of Volcanology and Seismology FEB RAS in cooperation with Space Research Institute RAS, Far-Eastern Center of SRC Planeta and Computing Center FEB RAS created the first version of the information system named “Remote Monitoring of Kamchatka and Kuril Islands Volcanic Activity” (IS VolSatView). The system provides experts with access to a variety of information, including long-term archives of remote sensing data needed for remote monitoring of volcanic activity. A number of web interfaces are developed to deal with the data provided by the system. They enable comprehensive data analysis and processing. However working with the system does not require any specialized desktop applications, but only a web browser and Internet connection to use the system. Since the launch of the system, the list of available data, as well as tools for their analysis, has been continuously expanding. By now, there is a lot of experience in daily use of the system by the experts in volcanology and for solving various problems in the studies of volcanoes and volcanic activity. This article describes the current state of the system, including recent developments, such as determination of the height of ash plumes, improvement of the time series analysis tools, implementation of specialized data processing products.
Гирина О.А., Лупян Е.А., Сорокин А.А., Мельников Д.В., Маневич А.Г., Кашницкий А.В., Уваров И.А., Балашов И.В., Романова И.М., Марченков В.В., Константинова А.М., Крамарева Л.С., Мальковский С.И., Королев С.П. Основные результаты 2019 г. комплексного мониторинга вулканов Камчатки и Курил с помощью информационной системы VolSatView // Материалы 17-ой Всероссийской открытой конференции "Современные проблемы дистанционного зондирования Земли из космоса". М.: ИКИ РАН. 2019. doi: 10.21046/17DZZconf-2019a.
Гирина О.А., Лупян Е.А., Уваров И.А., Крамарева Л.С. Извержение вулкана Райкоке 21 июня 2019 года // Современные проблемы дистанционного зондирования Земли из космоса. 2019. Т. 16. № 3. С. 303-307. doi: 10.21046/2070-7401-2019-16-3-303-307.    Annotation
Стратовулкан Райкоке, расположенный в Центральных Курилах, высотой 551 м (от дна моря ― 2500 м) на вершине имеет кратер диаметром 700 м и глубиной 200 м, состав его пород ― андезиты. Остров-вулкан Райкоке вместе с подводным вулканом 3.18 составляет единый вулканический массив размером 19×8 км, расстояние между их вершинами ― около 7 км. Относительная высота подводного вулкана от дна моря ― приблизительно 900 м, его вершина находится на глубине около 250 м, состав пород ― андезибазальты и андезиты. Известны только два сильных извержения Райкоке ― в 1778 г. и 15 февраля 1924 г. Современное эксплозивное извержение вулкана началось в 18:05 GMT 21 июня 2019 г. Первое сообщение о нем было передано Токио VAAC, информация о развитии извержения по данным различных спутников была получена нами с помощью информационной системы «Дистанционный мониторинг активности вулканов Камчатки и Курил (VolSatView)». Согласно данным со спутника Himawari-8 (http://volcanoes.smislab.ru/animation/1561927182.webm), основная фаза извержения началась серией крупных эксплозий, поднявших пепел до 10–13 км над уровнем моря, и продолжалась около 15 ч, сформировав мощную эруптивную тучу, двигавшуюся на северо-восток от вулкана более 2500 км. Аэрозольные облака Райкоке 30 июня отмечались на следующих расстояниях от вулкана: 3100 км (Новосибирские острова), 3500 км (оз. Байкал), около 5500–6000 км (северо-запад Канады). Детальный анализ спутниковой информации позволил предположить, что 24–25 июня началось излияние лавового потока на западный склон Райкоке. Возможно также, что во время извержения Райкоке извергался и подводный вулкан 3.18.

Raikoke stratovolcano is located in the Central Kuril Islands, with a height of 551 m (or 2500 m from the bottom of the sea), it has a crater on its peak with a diameter of 700 m and a depth of 200 m, the composition of its rocks is andesites. The island-volcano Raikoke together with the underwater volcano 3.18 is a single volcanic massif of 19×8 km in size, the distance between their peaks is about 7 km. The relative height of the underwater volcano from the bottom of the sea is about 900 m, its top is at a depth of about 250 m, the composition of the rocks of the underwater volcano is andesibasalts and andesites. There were only two known strong eruptions of Raikoke: in 1778 and on 15 February 1924. The current explosive eruption of Raikoke volcano began at 18:05 GMT on 21 June 2019. The first message about the eruption was transmitted by Tokyo VAAC; the information about the development of the eruption based on various satellites was obtained by us using the information system “Remote monitoring of the activity of volcanoes of Kamchatka and the Kuriles (VolSatView)”. According to the Himawari-8 satellite data (http://volcanoes.smislab.ru/animation/1561927182.webm), the main phase of the eruption began with a series of large explosions that raised ash to 10–13 km above sea level, and lasted about 15 hours, forming a powerful eruptive cloud moving over 2500 km North-East from the volcano. On 30 June, the aerosol clouds from Raikoke were observed at distances from the volcano: 3100 km (Novosibirsk Islands), 3500 km (Lake Baikal), about 5500–6000 km (Northwest Canada). A detailed analysis of satellite information suggested that on 24–25 June a lava flow began to pour out on the western slope of Raikoke. It is also possible that during the eruption of Raikoke, the underwater volcano 3.18 also erupted.



Recommended browsers for viewing this site: Google Chrome, Mozilla Firefox, Opera, Yandex. Using another browser may cause incorrect browsing of webpages.
 
Terms of use of IVS FEB RAS Geoportal materials and services

Copyright © Institute of Volcanology and Seismology FEB RAS, 2010-2021. Terms of use.
No part of the Geoportal and/or Geoportal content can be reproduced in any form whether electronically or otherwise without the prior consent of the copyright holder. You must provide a link to the Geoportal geoportal.kscnet.ru from your own website.
 
©Development&Design: roman@kscnet.ru