Библиография
Вулкан:
Группировать:  
Выбрать:     Все     "     0     1     2     3     4     5     7     A     B     C     D     E     F     G     H     I     K     L     M     N     O     P     Q     R     S     T     U     V     W          А     Б     В     Г     Д     Е     Ж     З     И     К     Л     М     Н     О     П     Р     С     Т     У     Ф     Х     Ц     Ч     Ш     Щ     Э     Ю     Я     
Записей: 73
Страницы:  1 2 3 4 5 6 7 8
 Р
Реконструкция динамики катастрофического извержения вулкана Шивелуч 12 ноября 1964 г. на основании данных о волновых возмущениях в атмосфере и вулканическом дрожании (1996)
Фирстов П.П. Реконструкция динамики катастрофического извержения вулкана Шивелуч 12 ноября 1964 г. на основании данных о волновых возмущениях в атмосфере и вулканическом дрожании // Вулканология и сейсмология. 1996. № 4. С. 48-63.
   Аннотация
По данным микробарографических каналов, расположенных в ближней зоне (45 и 113 км), детально проанализированы особенности волновых возмущений в атмосфере, сопровождавших извержение вулкана Шивелуч 12.11.1964 г. Показано, что волновые возмущения в атмосфере, возникшие во время этого сильного эксплозивного извержения, в основном обусловлены формированием конвективной колонны и несут информацию о динамике извержения и количестве выброшенного в атмосферу пепла. На основании соотношения интенсивности сейсмического и акустического сигналов показано, что извержение вулкана Шивелуч началось с грандиозного обвала (1,5 км3), в результате которого сформировалось пылевоздушное облако, явившееся источником первого акустического сигнала. Спустя 12 мин после обвала возникло вулканическое дрожание и начал работать второй источник акустического сигнала, что связывается с началом плинианской деятельности и извержением пирокластических потоков. Переход от одной стадии извержения к другой сопровождался резким усилением интенсивности вулканического дрожания и составляющей акустического сигнала с частотой > 0,05 Гц, а также генерацией длинноволнового (более 10 мин) возмущения с избыточным давлением 50 Па на расстоянии 113 км. Количество пепла, выброшенного в атмосферу, определенное по энергии длинноволновых возмущений, оценено в 0,35-0,45 км3, что удовлетворительно совпадает с геологическими данными (0,3 км3).
Реконструкция эруптивной деятельности вулкана Момотомбо (Никарагуа) для оценки вулканической опасности (1985)
Мелекесцев И.В., Андреев В.Н., Кирьянов В.Ю., Овсянников А.А. Реконструкция эруптивной деятельности вулкана Момотомбо (Никарагуа) для оценки вулканической опасности // Вулканизм и связанные с ним процессы. Тезисы докладов VI Всесоюзного вулканологического совещания. Петропавловск-Камчатский, сентябрь 1985 г. Петропавловск-Камчатский: ИВ ДВНЦ АН СССР. 1985. Вып. 1. С. 45-46.
Реконструкция эруптивной деятельности вулкана Момотомбо (Никарагуа) для оценки вулканической опасности (1989)
Мелекесцев И.В., Кирьянов В.Ю., Овсянников А.А., Андреев В.Н. Реконструкция эруптивной деятельности вулкана Момотомбо (Никарагуа) для оценки вулканической опасности // Вулканология и сейсмология. 1989. № 5. С. 16-27.
   Аннотация
В результате геолого-геоморфологических и тефрохронологических исследований одного из самых активных в Центральной Америке вулкана Момотомбо (Никарагуа) с целью оценки вулканической опасности построенной у его подножия ГеоТЭС, была восстановлена история формирования вулкана с момента его возникновения (4000-4500 лет назад) до настоящего времени. Крупнейшие извержения вулкана датировались МС методом, было прослежено площадное распространение тсфры, оценены объем и масса изверженных пород в целом и по отдельным эруптивным этапам. Проведенные исследования позволяют заключить, что все сооружения ГеоТЭС находятся в опасной зоне, а наибольшая опасность может быть связана с выпадением тефры. До конца XX века может произойти извержение с объемом материала порядка 50-100 млн. м3. В зависимости от ориентировки выбросов, скорости и направления ветра мощность тефры в районе ГеоТЭС может быть в пределах 20-150 см.
Реконстукция истории вулканической активности Толбачинского дола на базе тефро- и геохронологических исследований (1980)
Брайцева О.А., Мелекесцев И.В., Пономарева В.В., Сулержицкий Л.Д., Литасова С.Н. Реконстукция истории вулканической активности Толбачинского дола на базе тефро- и геохронологических исследований // Современный вулканизм и связанные с ним геологические, геофизические и геохимические явления (тезисы докладов) . V Всесоюзное вулканологическое совещание. Тбилиси: Мецниереба. 1980. С. 12-14.
Реликтовые минералы в вулканических породах (1971)
Масуренков Ю.П., Волынец О.Н. Реликтовые минералы в вулканических породах // Вулканизм и глубины Земли. Материалы III Всесоюзного вулканологического совещания, 28-31 мая 1969 г., Львов. М.: Наука. 1971. С. 131-137.
Рельеф и отложения молодых вулканических районов Камчатки (1970)
Мелекесцев И.В., Краевая Т.С. , Брайцева О.А. Рельеф и отложения молодых вулканических районов Камчатки. М.: Наука. 1970. 102 с.
Реологический взрыв как механизм образования андезитовой пирокластики (1997)
Максимов А.П. Реологический взрыв как механизм образования андезитовой пирокластики // Физико-химические и петрофизические исследования в науках о Земле. 1997, Москва. 1997.
Ресуспендированный пепел вулкана Шивелуч (2016)
Гирина О.А., Сорокин А.А., Мельников Д.В., Маневич А.Г. Ресуспендированный пепел вулкана Шивелуч // Современные проблемы дистанционного зондирования Земли из космоса. 2016. Т. 13. № 5. С. 315-319. https://doi.org/10.21046/2070-7401-2016-13-5-315-319.
   Аннотация
Ресуспендированные пеплы, широко распространенные в районах активного вулканизма, могут быть опасны для экосистем, человека и животных, а также для транспорта, включая малую авиацию. По данным ученых из KVERT, на Камчатке образование шлейфов ресуспендированных пеплов происходит в районе вулкана Шивелуч ежегодно преимущественно с августа до середины октября в течение 1–2 суток. Например, такие шлейфы наблюдались 3 августа 2011 г., 15–16 сентября и 3–4 октября 2015 г., 28–29 сентября и 2–4 октября 2016 г. Плотные пепловые шлейфы высотой от поверхности земли до 3 км н.у.м. и шириной до 16–22 км протягивались на расстояния до 600 км на юго-восток от вулкана. Анализ различных спутниковых данных в информационной системе VolSatView позволил выявить характерные особенности шлейфов ресуспендированных пеплов вулкана Шивелуч: шлейф на расстоянии 60–70 км от вулкана имеет наибольшую концентрацию пепловых частиц; его ширина на суше на протяжении 100 км достигает 16–22 км, а мощность – 1–2 км от поверхности земли; широкий шлейф, насыщенный пепловыми частицами, сохраняется в атмосфере от 3–5 ч до нескольких
суток.
Ретроспективный анализ извержения 1964 г. вулкана Шивелуч (Камчатка) с помощью информационной системы VolSatView (2018)
Гирина О.А., Мальковский С.И., Сорокин А.А. Ретроспективный анализ извержения 1964 г. вулкана Шивелуч (Камчатка) с помощью информационной системы VolSatView // Современные проблемы дистанционного зондирования Земли из космоса. Тезисы докладов. Шестнадцатая Всероссийская открытая конференция. 12-16 ноября 2018 г. М.: ИКИ РАН. 2018.
Ретроспективный анализ извержения 1964 г. вулкана Шивелуч (Камчатка) с помощью информационной системы VolSatView (2019)
Гирина О.А., Мальковский С.И., Сорокин А.А., Лупян Е.А. Ретроспективный анализ извержения 1964 г. вулкана Шивелуч (Камчатка) с помощью информационной системы VolSatView // Информационные технологии в дистанционном зондировании Земли - RORSE 2018. Электронный сборник статей 16-й конференции (12-16 ноября 2018 г., Москва, Россия) (2019 г.). М.: ИКИ РАН. 2019. С. 34-41. https://doi.org/10.21046/rorse2018.34.
   Аннотация
Современное развитие информационных технологий и систем компьютерного моделирования природных процессов, а также появление в открытом доступе исторических архивов метеорологических данных, позволяют проводить ретроспективный анализ крупных эксплозивных извержений вулканов. Эта работа посвящена моделированию и анализу событий, связанных с распространением эруптивных облаков во время катастрофического извержения вулкана Шивелуч в ноябре 1964 г. Полученные дополнительные параметры эруптивных облаков позволили восстановить динамику эксплозивного извержения.