Библиография
Вулкан:
Группировать:  
Выбрать:
Записей: 2744
 2022
Гирина О.А., Маневич А.Г., Мельников Д.В., Нуждаев А.А., Романова И.М., Лупян Е.А., Сорокин А.А., Крамарева Л.С., Демянчук Ю.В. Активность вулканов Камчатки и Курильских островов в 2021 г. и их опасность для авиации // Вулканизм и связанные с ним процессы. Материалы XXV ежегодной научной конференции, посвящённой Дню вулканолога, 30-31 марта 2022 г. Петропавловск-Камчатский: ИВиС ДВО РАН. 2022. С. 26-29.
   Аннотация
В статье описана активность вулканов Камчатки и Курильских островов в 2021 г. Эксплозивные события вулкана Карымский представляли опасность для международных и местных авиаперевозок, извержения других вулканов – для местных авиаперевозок.
Гирина О.А., Мельников Д.В., Маневич А.Г., Уваров И.А., Крамарева Л.С. Спутниковый мониторинг эксплозивного извержения 2022 года вулкана Чикурачки (Северные Курилы) // Современные проблемы дистанционного зондирования Земли из космоса. 2022. Т. 19. № 1. С. 302-306. https://doi.org/10.21046/2070-7401-2022-19-1-302-306.
   Аннотация
Вулкан Чикурачки находится в северной части хр. Карпинского на о. Парамушир Северных Курил. Его эруптивная деятельность представлена эксплозивными (вулканского типа) и эксплозивно-эффузивными извержениями умеренной силы; состав пород — андезибазальты. Имеются сведения о пятнадцати исторических извержениях вулкана. В работе дано описание извержения в январе – феврале 2022 г. на основании изучения различных спутниковых данных в информационной системе «Дистанционный мониторинг активности вулканов Камчатки и Курил» (VolSatView, http://kamchatka.volcanoes.smislab.ru). Эксплозивное извержение продолжалось трое суток, эксплозии поднимали пепел до 5,5 км над уровнем моря, пепловые шлейфы перемещались до 260 км, в основном на запад, юго-запад и юго-восток от вулкана. Общая площадь пеплопадов в течение извержения превышала 28 тыс. км2, в том числе на суше — 640 км2. Активность вулкана была опасной для местных авиаперевозок.
Горбач Н.В., Философова Т.М., Мельников Д.В., Маневич Т.М. Состав вулканических стекол в продуктах вершинного извержения и побочного прорыва им. Г.С. Горшкова на вулкане Ключевской в 2020–2021 гг.: сравнительный анализ и интерпретация // Вулканология и сейсмология. 2022. № 2. С. 28-37. doi: 10.31857/S0203030622010035.
   Аннотация
Представлены результаты анализа химического состава вулканических стекол в продуктах извержений вулкана Ключевской в 2020–2021 гг. Приведены краткие сведения о вещественном составе андезибазальтов (SiO2 – 53.5, Al2O3 – 16.35, MgO – 6.61, K2O – 0.98 (мас. %)) начального этапа активности побочного прорыва им. Г.С. Горшкова. Вариации состава вулканических стекол в продуктах вершинного извержения и последующего побочного прорыва отражают степень кристалличности изученных частиц тефры и последовательную смену популяций микролитов на завершающих стадиях кристаллизации андезибазальтовой магмы. Сравнение полученных нами составов стекол с аналогичными данными для тефры эруптивных эпизодов 2010 и 2016 гг. показывает их полную идентичность, что свидетельствует о постоянном составе андезибазальтовой магмы, питающей современные извержения вулкана.
Долгая А.А., Бергаль-Кувикас О.В. Применение геоинформационных технологий при оценке обвально-взрывных отложений вулкана Корякский // XI Российская молодёжная научно-практическая Школа «НОВОЕ В ПОЗНАНИИ ПРОЦЕССОВ РУДООБРАЗОВАНИЯ». ИГЕМ РАН. 2022. С. 86-88.
Дубинин Е.П., Скрипко К.А. Продукты вулканических извержений. Лавы и вулканокласты: Учебное пособие к циклу научно-образовательных лекций на основе экспозиционного комплекса зала «Магматизм» по программе Музея землеведения МГУ «Музейный абонемент». М.: Изд-во «ОнтоПринт». 2022. 28 с.
Зеленин Е.А., Гарипова С.Т. Активная разломная тектоника Срединного хребта, п-ов Камчатка // Вестник КРАУНЦ. Серия: Науки о Земле. 2022. Вып. 53. № 1. С. 104-112. doi: 10.31431/1816-5524-2022-1-53-104-112.
   Аннотация
В статье представлены результаты структурно-геоморфологического дешифрирования космических снимков для изучения активных разломов Срединного хребта Камчатки. Использование данных дистанционного зондирования Земли позволило выделить разломные уступы, а также магмопроводящие трещины, проявленные в рельефе цепочками центров извержений. Большинство выявленных разрывов расположено на вулканических плато, что косвенно свидетельствует о приуроченности разломов к области утонения хрупкого слоя земной коры под вулканическом поясом, аналогично разломам Восточного вулканического пояса. Геометрические характеристики наиболее сохранных уступов позволяют оценить магнитуду палеоземлетрясений Mw = 5.8±0.2, существенно превышающую историческую сейсмичность. Выявленные разрывы расположены над северным краем погруженной части Тихоокеанской плиты и протягиваются под острым углом к оси Курило-Камчатской островодужной системы. Простирание и сбросовая кинематика разломов отвечают общей для Камчатки обстановке поперечного растяжения. Полученные данные впервые обосновывают положение северной и западной границ надсубдукционных деформаций растяжения п-ова Камчатка.
Иноземцев А.А., Попова Д.Д., Абрамчук Т.В., Гирина О.А., Рысин Л.С., Купцов С.В., Саженков А.Н., Сендюрев С.И., Челомбитько А.В., Галлямов М.Д., Двинских А.В. Исследование устойчивости авиационного двигателя ПД-14 к воздействию вулканического пепла // Вестник УГАТУ. 2022. Т. 26. Вып. 96. № 2. С. 60-70. https://doi.org/10.54708/19926502_2022_2629660.
   Аннотация
Впервые представлены результаты испытаний российского авиационного двигателя типа ПД-14 при попадании в его газовоздушный тракт вулканического пепла. Испытания ПД-14 разработки АО «ОДК-Авиадвигатель» проводили в условиях закрытого наземного стенда Ц-17Т ФАУ «ЦИАМ им. П. И. Баранова» согласно требованиям европейского агентства по авиационной безопасности EASA. В качестве вулканического пепла использовали натуральный пепел современных извержений камчатского вулкана Шивелуч. Показано, что попадание пепла в двигатель ПД-14 с максимально допустимой в Европе концентрацией 4 мг/м3 в течение одного часа не приводит к изменению тяговых характеристик ПД-14 и возникновению нежелательных последствий. Особое внимание уделено воздействию вулканического пепла на камеру сгорания и турбину двигателя. Приведены данные рентгеноспектрального анализа стекловидных отложений пепла на элементах турбины. Проведен численный расчет модельной области генерации стекловидных отложений пепла Шивелучa в газовоздушном тракте двигателя ПД-14.
Калачева Е.Г. Морская экспедиция на Курильские острова летом 2022 г. // Вестник КРАУНЦ. Серия: Науки о Земле. 2022. Вып. 55. № 3. С. 96-104. doi: 10.31431/1816-5524-2022-3-55-96-104.
   Аннотация
Представлена краткая характеристика экспедиционных работ, выполненных сотрудниками Института вулканологии и сейсмологии ДВО РАН в рамках темы НИР и проекта РНФ на Курильских островах летом 2022 г. С целью изучения химической эрозии вулканических островов и для оценки гидротермального выноса магматических летучих, в дополнение к работам, выполненным в 2020 и 2021 гг., проведены гидрологические и гидрохимические исследования на реках, дренирующих склоны вулканических хребтов о-вов Парамушир, Онекотан и Шиашкотан. Впервые с помощью квадрокоптера проведено опробование бессточного озера Кольцевое, занимающего кальдеру вулкана Тао-Русыр (о. Онекотан). Выполнено детальное гидрохимическое опробование на термальных полях активных вулканов Синарка и Кунтоминтар (о. Шиашкотан), пополнен ряд режимных наблюдений за Верхне-Юрьевскими источниками (о. Парамушир). Для построения ортофотопланов и определения границ термоаномалий, на основных объектах исследования, параллельно с геохимическим опробованием, выполнялась аэрофото- и инфракрасная съемка. Для дальнейших аналитических исследований в ходе экспедиционных работ отобрано большое число водных и газовых проб, пополнена коллекция осадков.
Калачева Е.Г., Волошина Е.В. Геохимическая характеристика термальных источников привершинной части вулкана Эбеко (о. Парамушир, Курильские острова) // Вестник КРАУНЦ. Серия: Науки о Земле. 2022. Вып. 54. № 2. С. 6-19. doi: 10.31431/1816-5524-2022-2-54-6-19.
   Аннотация
На основании данных, полученных в результате полевых работ 2020–2021 гг., дается характеристика химического и изотопного состава горячих источников привершинной части активного вулкана Эбеко (о. Парамушир, Курильские о-ва). Термальные воды, разгружающиеся в одном из истоков р. Кузьминка ультракислые (рН < 2) Al-Ca-SO4-Cl типа с минерализацией до 5 г/л и температурой до 70°С. Анионный состав вод формируется за счет растворения в грунтовых водах кислых вулканических газов, частично «очищенных» в основном резервуаре гидротермальной системы вулкана. Катионный состав вод, включая редкоземельные элементы, образуется за счет изохимического растворения вмещающих пород в эквиваленте 5 г на 1 л воды. Различия в изотопном составе и соотношениях макрокомпонентов (SO4 /Cl, Al+Fe/Ca+Mg/Na+K) вод источников привершинной части и северо-западного склона дают возможность предположить наличие разноуровневых водоносных горизонтов в гидротермальной системе, приуроченной к постройке вулкана Эбеко.
Калачева Е.Г., Котенко Т.А., Волошина Е.В., Эрдниева Д.Ю. Береговые термальные источники центральной части о. Итуруп: макро- и микроэлементный составы // Вестник КРАУНЦ. Серия: Науки о Земле. 2022. Вып. 55. № 3. С. 31-44. doi: 10.31431/1816-5524-2022-3-55-31-44.
   Аннотация
По результатам экспедиционных исследований (июль 2021 г.), рассмотрены геохимические особенности термальных вод (естественные проявления и скважинные воды), разгружающихся вблизи или непосредственно на Охотоморском и Тихоокеанском побережьях центральной части о. Итуруп: Рейдовские, Лососевые, мыса Конакова, Горячие ключи, Дачные, водно-оздоровительного комплекса «Ванночки». Источники (за исключением Лососевых) относятся к субнейтральным Cl(Cl-HCO3)-Na водам с минерализацией менее 10 г/л. Источники Лососевые — к слабокислым водам HCO3-SO4-Ca-Na типа с минерализацией 3 г/л. В спонтанном газе преобладают CO2 (Дачные и «Ванночки»), N2 (Рейдовские и мыса Конакова) и CH4 (Горячие ключи). На фоне общего крайне низкого содержания микроэлементов происходит обогащение термальных вод бором и литием. Естественные выходы характеризуются небольшими (0.1 л/с) до незначительных (0.02–0.05 л/с) дебитами, тогда как пробуренные рядом скважины вскрывают горизонты напорных вод.