Библиография
Вулкан:
Группировать:  
Записей: 2355
Статьи
Dorendorf Frank, Wiechert Uwe, Wörner Gerhard Hydrated sub-arc mantle: a source for the Kluchevskoy volcano, Kamchatka/Russia // Earth and Planetary Science Letters. 2000. Vol. 175. № 1–2. P. 69 - 86. doi: 10.1016/S0012-821X(99)00288-5.    Аннотация
Oxygen isotope ratios of olivine and clinopyroxene phenocrysts from the Kluchevskoy volcano in Kamchatka have been studied by CO2 and ArF laser techniques. Measured δ18O values of 5.8–7.1‰ for olivine and 6.2–7.5‰ for clinopyroxene are significantly heavier than typical mantle values and cannot be explained by crustal assimilation or a contribution of oceanic sediments. Positive correlations between δ18O and fluid-mobile elements (Cs, Li, Sr, Rb, Ba, Th, U, LREE, K) and a lack of correlation with fluid-immobile elements (HFSE, HREE) suggest that 18O was introduced into the mantle source by a fluid from subducted altered oceanic basalt. This conclusion is supported by radiogenic isotopes (Sr, Nd, Pb). Mass balance excludes simple fluid-induced mantle melting. Instead, our observations are consistent with melting a mantle wedge which has been hydrated by 18O-rich fluids percolating through the mantle wedge. 18O-enriched fluids are derived from the subducted oceanic crust and the Emperor seamount chain, which is responsible for a particularly high fluid flux. This hydrated mantle wedge was subsequently involved in arc magmatism beneath Kluchevskoy by active intra-arc rifting.
Edwards B. , Belousov A., Belousova M. Propagation style controls lava-snow interactions // Nature Communications. 2014. Vol. 5. № 56666. P. 1-5. doi: 10.1038/ncomms6666.
Edwards Ben, Belousov Alexander, Belousova Marina, Volynets Anna, Melnikov Dmitry, Chirkov Sergey, Senyukov Sergey, Gordeev Evgenii, Muraviev Yaroslav, Izbekov Pavel, Demianchuk Yury Another “Great Tolbachik” Eruption? // Eos, Transactions American Geophysical Union. 2013. Vol. 94. № 21. P. 189-191. doi:10.1002/2013EO210002.    Аннотация
On 27 November 2012 at 1715 local time, a focused swarm of earthquakes was interpreted as the start of a new ongoing eruption on the south flank (Tolbachinsky Dol) of Plosky Tolbachik volcano in east central Kamchatka, Russia (Figure 1a) [Samoylenko et al., 2012]. Visual observations on 29 November showed ash shooting from two fractures as well as long, rapidly moving lava flows. Although the initial ash clouds reached 6 kilometers in height, subsequent ashfall has been limited to the area around the main vents, and no permanent settlements are in danger from advancing lava flows (the closest settlements are about 40 kilometers from the volcano). Including this eruption, six different volcanoes are presently active in Kamchatka.
Edwards Benjamin R., Belousov Alexander, Belousova Marina, Melnikov Dmitry Observations on lava, snowpack and their interactions during the 2012–13 Tolbachik eruption, Klyuchevskoy Group, Kamchatka, Russia // Journal of Volcanology and Geothermal Research. 2015. Vol. 307. P. 107 - 119. doi: 10.1016/j.jvolgeores.2015.08.010.    Аннотация
Abstract Observations made during January and April 2013 show that interactions between lava flows and snowpack during the 2012–13 Tolbachik fissure eruption in Kamchatka, Russia, were controlled by different styles of emplacement and flow velocities. `A`a lava flows and sheet lava flows generally moved on top of the snowpack with few immediate signs of interaction besides localized steaming. However, lavas melted through underlying snowpack 1–4 m thick within 12 to 24 h, and melt water flowed episodically from the beneath flows. Pahoehoe lava lobes had lower velocities and locally moved beneath/within the snowpack; even there the snow melting was limited. Snowpack responses were physical, including compressional buckling and doming, and thermal, including partial and complete melting. Maximum lava temperatures were up to 1355 K (1082 °C; type K thermal probes), and maximum measured meltwater temperatures were 335 K (62.7 °C). Theoretical estimates for rates of rapid (e.g., radiative) and slower (conductive) snowmelt are consistent with field observations showing that lava advance was fast enough for `a`a and sheet flows to move on top of the snowpack. At least two styles of physical interactions between lava flows and snowpack observed at Tolbachik have not been previously reported: migration of lava flows beneath the snowpack, and localized phreatomagmatic explosions caused by snowpack failure beneath lava. The distinctive morphologies of sub-snowpack lava flows have a high preservation potential and can be used to document snowpack emplacement during eruptions.
Edwards Benjamin R., Belousov Alexander, Belousova Marina, Volynets Anna Introduction to the 2012–2013 Tolbachik eruption special issue // Journal of Volcanology and Geothermal Research. 2015. Vol. 307. P. 1 - 2. doi: 10.1016/j.jvolgeores.2015.12.001.
Egorova I.A. Age and Paleogeography of Formation of Volcano-Sedimentary Deposits in the Uzon-Geizernaya Caldera Depression, Kamchatka (According to Palynological Data) // Volcanology and Seismology. 1993. Vol. 15. № 2. P. 157-176.    Аннотация
Based on thepalynological studies, the age dismembering is made of volcanogenic-sedimentary deposits in the Uzon-Geysernaya Caldera Depression. The paleogeographical setting of the time of sedimentation is described. The age of deposits was established to be Late Pleitocene-Holocene. The dating was made of the main events of the post-caldera volcanic activity in the Uzon Caldera.
Erlich E.N., Melekestsev I.V. Evolution of Quaternary Volcanism and Tectonics in the Western Part of the Pacific Ring // Pacific Geology. 1972. № 4. P. 1-22.
Erlich E.N., Melekestsev I.V., Braitseva O.A. Evolution of Recent Volcanism // Bulletin of Volcanology. 1979. Vol. 42. № 1-4. P. 93-112. doi: 10.1007/BF02597042.
Falvard S., Paris R., Belousova M., Belousov A., Giachetti T., Cuven S. Scenario of the 1996 volcanic tsunamis in Karymskoye Lake, Kamchatka, inferred from X-ray tomography of heavy minerals in tsunami deposits // Marine Geology. 2018. № 396. P. 160-170.
Fazlullin S.M., Ushakov S.V., Shuvalov R.A., Aoki M., Nikolaeva A.G., Lupikina E.G. The 1996 subaqueous eruption at Academii Nauk volcano (Kamchatka) and its effects on Karymsky lake // Journal of Volcanology and Geothermal Research. 2000. Vol. 97. № 1–4. P. 181 - 193. doi: 10.1016/S0377-0273(99)00160-2.    Аннотация
A subaqueous eruption in Karymsky lake in the Academii Nauk caldera dramatically changed its water column structure, water chemistry and biological system in less than 24 h, sending major floodwaves down the discharging river and eruption plumes with ash and gases high into the atmosphere. Prior to the eruption, the lake had a pH of about 7, was dominated by bicarbonate, and well stocked with fish, but turned in early 1996 into a stratified, initially steaming waterbody, dominated by sulfate with high Na and K levels, and devoid of fish. Blockage of the outlet led to rising waterlevels, followed by dam breakage and catastrophic water discharge. The total energy input during the eruption is estimated at about 1016 J. The stable isotope composition of the lake water remained dominated by the meteoric meltwaters after the eruption.



Рекомендуемые браузеры для просмотра данного сайта: Google Chrome, Mozilla Firefox, Opera, Yandex. Использование другого браузера может повлечь некорректное отображение содержимого веб-страниц.
 
Условия использования материалов и сервисов Геопортала

Copyright © Институт вулканологии и сейсмологии ДВО РАН, 2010-2021. Пользовательское соглашение.
Любое использование либо копирование материалов или подборки материалов Геопортала может осуществляться лишь с разрешения правообладателя и только при наличии ссылки на geoportal.kscnet.ru
 
©Development&Design: roman@kscnet.ru