Bibliography
Volcano:
Group by:  
Jump to:
Records: 2744
 2008
Мельников Д.В. Применение данных OMI/Aura для задач мониторинга извержений вулканов Камчатки // Современные проблемы дистанционного зондирования Земли из космоса. 2008. Т. 5. № 1. С. 371-375.
Озеров А.Ю. О механизме извержения базальтовых вулканов // Тезисы докладов Ежегодной конференции, посвященной Дню вулканолога, 27–29 марта 2008 г. Петропавловск-Камчатский. 2008.
Пономарева В.В., Мельников Д.В., Романова И.М. Геоинформационная система «Новейший вулканизм Камчатки» // Современные информационные технологии для научных исследований. Материалы Всероссийской конференции. 20-24 апреля 2008 г., г. Магадан. Магадан: СВНЦ ДВО РАН. 2008. С. 105
Пономарева В.В., Чурикова Т.Г., Мелекесцев И.В., Брайцева О.А., Певзнер М.М., Сулержицкий Л.Д. Позднеплейстоцен-голоценовый вулканизм Камчатки / Изменение окружающей среды и климата: природные и связанные с ними техногенные катастрофы. Том II. Новейший вулканизм северной Евразии: закономерности развития, вулканическая опасность, связь с глубинными процессами и изменениями природной среды и климата. М.: ИГЕМ РАН. 2008. С. 19-40.
   Annotation
Изменение окружающей среды и климата: природные и связанные с ними техногенные катастрофы. Том II. Новейший вулканизм северной Евразии: закономерности развития, вулканическая опасность, связь с глубинными процессами и изменениями природной среды и климата. М., Изд-во ИГЕМ; 2008, с. 19-40
Соболевская О.В., Сенюков С.Л. Ретроспективный анализ изменения температуры термальной аномалии на вулкане Безымянный в 2002-2007 гг., как предвестника его извержений, по данным сенсора AVHRR спутников NOAA 16 и 17 // Вестник КРАУНЦ. Серия: Науки о Земле. 2008. Вып. 11. № 1. С. 147-157.
   Annotation
The Kamchatka branch of geophysical survey of RAS (KB GS RAS) is carry out a monitoring of activity of active volcanoes with the purpose of estimation of volcanic danger. One of the sections of observations is the satellite monitoring of thermal anomalies and ash plumes. They are based on a treatment and interpretation of satellite data information of AVHRR sensor of NOAA 16 and 17 satellites. The seismic monitoring is the main parameter for the volcano eruptions precursor as the most informative and authoritative method, because the quality of the seismic data is independent of the weather conditions. The seismic monitoring of the Bezymianny volcano is sometimes impossible or wrong. For the technical reasons or when strong seismic activity at the Klyuchevskoy volcano obscures the seismic data for the Bezymianny. So, the satellite monitoring of the thermal anomalies and research of its parameters are allows us to make a short-dated forecast for the Bezymianny volcano eruptions. The main aim of this article is an investigation of the thermal anomalies temperatures as a short-dated precursor for the Bezymianny volcano eruptions. There were 10 eruptions of the Bezymianny volcano in 2002-2007. The "normal", "higher" and "emergency" levels of anomaly temperatures with an allowance for the seasons of the year were separated. We separated such forecasting anomalies temperature values: "normal level" - is a temperature range, wherein the volcano activity on the ground level; "higher level" - is a temperature range, wherein the volcano prepare for any event (large rock fall, ash plume or eruption); "emergency level" - is temperature range, wherein the eruption will happen in the next 1-4 days. There are some criteria were mark out as a results of our researches. These criteria allow us to know the current status of volcano in presence using satellite data. The got information is compared with seismic, visual and video data, that allows us to trace the process of preparation of volcano to eruption much high-quality. The research results of the thermal anomaly temperatures are using as a secondary parameter to the seismic data for the Bezymianny volcano eruption precursor.
Типизация проявлений вулканизма и факторов его воздействия на природную среду в различных геодинамических обстановках (в части вулканической деятельности в обстановках конвергентных границ литосферных плит). Научно-технический отчет по этапу №1 НИР «Исследование вулканических процессов и возможности их регулирования» (промежуточный). 2008. 116 с.
Федотов С.А., Жаринов Н.А., Гонтовая Л.И., Собисевич А.Л. Вулкан Ключевской (Камчатка): деятельность, магматическая питающая система, сейсмотомография / Изменение окружающей среды и климата: природные и связанные с ними техногенные катастрофы. Том II. Новейший вулканизм северной Евразии: закономерности развития, вулканическая опасность, связь с глубинными процессами и изменениями природной среды и климата. М.: ИГЕМ РАН. 2008. Т. 2. С. 273-294.
Фролова Ю.В., Ладыгин В.М. Петрофизические преобразования пород Мутновского вулканического района (Южная Камчатка) под воздействием гидротермальных процессов // Вестник КРАУНЦ. Серия: Науки о Земле. 2008. Вып. 11. № 1. С. 158-170.
   Annotation
The paper describes petrophysical changes of Neogene-Quaternary volcanic rocks from Mutnovsky volcanic region under the action of hydrothermal processes. It was concluded that hydrothermal alterations lead to remarkable changes of physical and mechanical properties of rocks however the tendency of properties variation is different depending from a number of factors. Propylitization causes rocks consolidation, hardening, an increase of elastic properties, a decrease of porosity and disappearing of hygroscopic moisture. The influence of low-temperature fluids on the rocks is not so unequivocally. There can be a decrease as well as an increase of petrophysical properties. The sharp difference by properties, the structure of pore-space and the character and speed of hydrothermal alterations is observed between lavas and volcaniclastic rocks. However the primary differences between these rocks can disappear due to an intensive hydrothermal activity.
Хубуная С.А., Гонтовая Л.И., Москалева С.В. Малоглубинный очаг вулкана Ключевской // Материалы конференции, посвященной Дню вулканолога, Петропавловск-Камчатский, 27-29 марта 2008 г. Петропавловск-Камчатский: ИВиС ДВО РАН. 2008. С. 291-304.
   Annotation
Одной из главных петрологических проблем вулканизма островных дуг является проблема его источника, так как ни один из наиболее распространенных типов высоко-глиноземистых базальтов, развитых в пределах этих структур не может быть получен непосредственным плавлением предполагаемого вещества мантии. Для Ключевской группы вулканов эта проблема стоит наиболее остро, так как здесь на ограниченной площади представлены продукты двух основных типов магм: известково-щелочной и субщелочной. По-видимому, решение проблемы лежит в возможности разноглубинного и частичного плавления вещества мантии и дальнейшего фракционирования и смешения магм в промежуточных магматических камерах. Изучение магматических очагов под Ключевской группой вулканов является одной из актуальных задач вулканологии, тесно связанной с проблемами геодинамики и прогнозом вулканических извержений.
 2007
Andrews B.J., Gardner J.E., Tait S., Ponomareva V.V., Melekestsev I.V. Dynamics of the 1800 14C yr BP caldera-forming Eruption of Ksudach Volcano, Kamchatka, Russia / Volcanism and Subduction: The Kamchatka Region. Geophysical Monograph Series. Washington, D. C.: American Geophysical Union. 2007. Vol. 172. P. 325-342. doi: 10.1029/GM172.
   Annotation
The 1800 14C yr BP Ksudach KS1 rhyodacite deposits present an opportunity to study the effects of caldera collapse on eruption dynamics and behavior. Stratigraphic relations indicate four Phases of eruption, Initial, Main, Lithic, and Gray. Well-sorted, reverse-graded pumice fall deposits overlying a silty ash compose the Initial Phase layers. The Main, Lithic, and Gray Phases are represented by pumice fall layers interbedded with pyroclastic flow and surge deposits (proximally) and co-ignimbrite ashes (distally). Although most of the deposit is <30 wt.% lithics, the Lithic Phase layers are >50 wt.% lithics. White and gray pumice are compositionally indistinguishable, however vesicle textures and microlite populations indicate faster ascent by the white pumice prior to eruption of the Gray Phase. The eruption volume is estimated as ∼8.5 km3 magma (dense rock equivalent) and ∼3.6 km3 lithics. Isopleth maps indicate mass flux ranged from 5–10×10^7 kg/s during the Initial Phase to >10^8 kg/s during the Main, Lithic, and Gray Phases. Caldera Collapse during the Lithic Phase is reflected by a large increase in lithic particles and the abrupt textural change from white to gray pumice; collapse began following eruption of ∼66% of the magma, and finished when ∼72% of the magma was erupted. Stratigraphic, granulometric, and component analyses indicate simultaneous eruption of buoyant plumes and non-buoyant flows during the Main, Lithic, and Gray Phases. Although mass flux did not change significantly following caldera collapse, the Gray Phase of eruption was dominated by non-buoyant flows in contrast to the earlier Phases that erupted mostly buoyant plumes.