Главная Вулканы Авачинский


Козельский Корякский
Вулкан Авачинский. Библиография

Количество записей: 146
Страницы:  1 2 3 4 5 6 7 8
Bazanova L.I., Puzankov M.Yu., Maksimov A.P. Plinian basaltic andesite eruptions of Avachinsky volcano, Kamchatka, Russia: chronology, dynamics and deposits // European Geosciences Union 2007. European Geosciences Union. 2007. V. 9. P. 05012
Braitseva O.A., Bazanova L.I., Melekestsev I.V., Sulerzhitskiy L.D. Large holocene eruptions of Avacha Volcano, Kamchatka (7250-3700 14C years B.P.) // Volcanology and Seismology. 1998. V. 20. № 1. P. 1-27.    Аннотация
The chronology, dynamics, and parameters of seven large eruptions of Avacha Volcano were reconstructed for its IAv andesitic period 7250-370014C years B.P., which began after a >2000-year period of relative quiescence. Their juvenile (andesitic pyroclastics) and resurgent products are described, and the geological and geomorphological consequences are evaluated. The largest eruption occurred 715014C years B.P. (8-10 km3 of erupted material). The subsequent events occurred 5700 (≥0.34 km3), 5600 (≥0.4 km3), 5500 (>1.34 km3), 5000 (≥0.5 km3), 4500 (>1.1 km3), and 4000 (≥0.6 km3) 14C years B.P. The erupted rocks were dominated by tephra; pyroclastic flows occurred only during the events of 5500 and 5000 years ago. It is believed that most of the eruptions produced acid peaks of varying intensity in the Greenland ice sheet.

Реконструированы хронология, динамика и параметры семи крупнейших извержений андезитового этапа 1Ав 7250-3700 14С-лет назад (л.н.) вулкана Авачинский на Камчатке, начавшегося после >2000-летнего периода относительного покоя. Описаны их ювенильные (андезитовая пирокластика) и резургентные продукты, оценен геолого-геоморфологический эффект. Самое мощное извержение (объем продуктов 8-10 км3) было 7250, последующие - 5700 (3*0,34 км3), 5600 (3*0,4 км3), 5500 (1,34 км3), 5000 (0,5 км3), 4500 (>1,1 км3), 4000 ( 0,6 км3) 14С-л.н. Среди изверженных продуктов преобладала тефра, пирокластические потоки имели место лишь при извержениях 5500 и 5000 л.н. Предполагается, что большинство извержений могло давать кислотные пики разной интенсивности в Гренландском ледниковом щите.
http://repo.kscnet.ru/921/ [связанный ресурс]
Braitseva O.A., Melekestsev I.V., Ponomareva V.V., Sulerzhitskii L.D. The ages of calderas, large explosive craters and active volcanoes in the Kuril-Kamchatka region, Russia // Bulletin of Volcanology. 1995. V. 57. № 6. P. 383-402. doi: 10.1007/BF00300984.    Аннотация
The ages of most of calderas, large explosive craters and active volcanoes in the Kuril-Kamchatka region have been determined by extensive geological, geomorphological, tephrochronological and isotopic geochronological studies, including more than 600 14C dates. Eight ‘Krakatoa-type’ and three ‘Hawaiian-type’ calderas and no less than three large explosive craters formed here during the Holocene. Most of the Late Pleistocene Krakatoa-type calderas were established around 30 000–40 000 years ago. The active volcanoes are geologically very young, with maximum ages of about 40 000–50 000 years. The overwhelming majority of recently active volcanic cones originated at the very end of the Late Pleistocene or in the Holocene. These studies show that all Holocene stratovolcanoes in Kamchatka were emplaced in the Holocene only in the Eastern volcanic belt. Periods of synchronous, intensified Holocene volcanic activity occurred within the time intervals of 7500–7800 and 1300–1800 14C years BP.
Braitseva O.A., Sulerzhitsky L.D., Litasova S.N., Melekestsev I.V., Ponomareva V.V. Radiocarbon dating and tephrochronology in Kamchatka // Radiocarbon. 1993. V. 35. № 3. P. 463-476.    Аннотация
We discuss results of 14C dates obtained from areas of young volcanoes in Kamchatka. We apply these dates to reconstructing regional volcanic activity during the Holocene.
Braitseva Olga A., Ponomareva Vera V., Sulerzhitsky Leopold D., Melekestsev Ivan V., Bailey John Holocene Key-Marker Tephra Layers in Kamchatka, Russia // Quaternary Research. 1997. V. 47. № 2. P. 125-139. doi:10.1006/qres.1996.1876.    Аннотация
Detailed tephrochronological studies in Kamchatka Peninsula, Russia, permitted documentation of 24 Holocene key-marker tephra layers related to the largest explosive eruptions from 11 volcanic centers. Each layer was traced for tens to hundreds of kilometers away from the source volcano; its stratigraphic position, area of dispersal, age, characteristic features of grain-size distribution, and chemical and mineral composition confirmed its identification. The most important marker tephra horizons covering a large part of the peninsula are (from north to south; ages given in 14C yr B.P.) SH2(≈1000 yr B.P.) and SH3(≈1400 yr B.P.) from Shiveluch volcano; KZ (≈7500 yr B.P.) from Kizimen volcano; KRM (≈7900 yr B.P.) from Karymsky caldera; KHG (≈7000 yr B.P.) from Khangar volcano; AV1(≈3500 yr B.P.), AV2(≈4000 yr B.P.), AV4(≈5500 yr B.P.), and AV5(≈5600 yr B.P.) from Avachinsky volcano; OP (≈1500 yr B.P.) from the Baraniy Amfiteatr crater at Opala volcano; KHD (≈2800 yr B.P.) from the “maar” at Khodutka volcano; KS1(≈1800 yr B.P.) and KS2(≈6000 yr B.P.) from the Ksudach calderas; KSht3(A.D. 1907) from Shtyubel cone in Ksudach volcanic massif; and KO (≈7700 yr B.P.) from the Kuril Lake-Iliinsky caldera. Tephra layers SH5(≈2600 yr B.P.) from Shiveluch volcano, AV3(≈4500 yr B.P.) from Avachinsky volcano, OPtr(≈4600 yr B.P.) from Opala volcano, KS3(≈6100 yr B.P.) and KS4(≈8800 yr B.P.) from Ksudach calderas, KSht1(≈1100 yr B.P.) from Shtyubel cone, and ZLT (≈4600 yr B.P.) from Iliinsky volcano cover smaller areas and have local stratigraphic value, as do the ash layers from the historically recorded eruptions of Shiveluch (SH1964) and Bezymianny (B1956) volcanoes. The dated tephra layers provide a record of the most voluminous explosive events in Kamchatka during the Holocene and form a tephrochronological timescale for dating and correlating various deposits.
Dirksen O., van den Bogaard C., Danhara T., Diekmann B. Tephrochronological investigation at Dvuh-yurtochnoe lake area, Kamchatka: Numerous landslides and lake tsunami, and their environmental impacts // Quaternary International. 2011. V. 246. № 1-2. P. 298 - 311. doi: 10.1016/j.quaint.2011.08.032.    Аннотация
Distal volcanic tephras in soil sections and lake sediments in the Dvuh-yurtochnoe (Two-Yurts) lake area, central Kamchatka, were investigated in order to provide a chronological framework for the reconstruction of late Quaternary landscape development. Mineralogical and geochemical data point to sources from 5 volcanoes. Ten tephra layers were identified and correlated to known eruptive events. The ages were corroborated by radiocarbon dating of the soil sections around Two-Yurts lake. These findings allow the reconstruction of regional paleoenvironmental change, recorded in the soil sections around Two-Yurts lake. During the Last Glacial Maximum (LGM) time, the area was affected by glacial advances that produced the glacial moraines at the eastern outlet of the lake. A large landslide, ca. 15,000–18,000 14C BP, dammed the valley and led to formation of Two-Yurts lake. Several more landslide events can be recognized in the Holocene, and one affected Two-Yurts lake ca. 3000 14C BP. This event produced a “tsunami”, documented by poorly sorted deposits with rounded pebbles in the onshore sections around the lake. In contrast to the soil sections, tephras buried in the “soupy” lacustrine sediments of Two-Yurts lake are not well preserved and show inconsistent age-depth relationships compared to those suggested by radiocarbon dating, due to sinking through the lake sediments. Nevertheless, tephrochronological data revealed the strong impact of terrestrial landslides on lake sedimentation.
Ditmar von Karl Reisen und Aufenthalt in Kamtschatka in den Jahren 1851–1855. Erster Teil. Historischer Bericht nach den Tagebüchern. St. Petersburg: Buchdruckerei der Kaiserlichen Academie der Wissenschaften. 1890.    Аннотация
Der Geologe Karl von Ditmar erkundete von 1851 bis 1855 im Auftrag der russischen Regierung die Bodenschätze Kamčatkas. Dabei erforschte er das Land und seine Bevölkerung aber weit über diesen Autrag hinaus, was seine eindrucksvollen Reisebeschreibungen zeigen. So verbrachte er im Sommer 1853 als erster Forscher längere Zeit bei den Korjaken auf der Halbinsel Tajgonos. Der 1890 erschienene erste Teil seines Werkes enthält den ausführlichen Bericht seiner Reise nach den Tagebüchern, ein getrennt erscheinender zweiter Teil die systematische Darstellung der Natur und der Geschichte Kamčatkas.
http://repo.kscnet.ru/566/ [связанный ресурс]
http://repo.kscnet.ru/831/ [связанный ресурс]
Ditmar von Karl Reisen und Aufenthalt in Kamtschatka in den Jahren 1851–1855. Zweiter Teil. Allgemeines über Kamtschatka. St. Petersburg: Buchdruckerei der Kaiserlichen Academie der Wissenschaften. 1900. 273 p.    Аннотация
Der Geologe Karl von Ditmar erkundete von 1851 bis 1855 im Auftrag der russischen Regierung die Bodenschätze Kamčatkas. Dabei erforschte er das Land und seine Bevölkerung aber weit über diesen Autrag hinaus, was seine eindrucksvollen Reisebeschreibungen zeigen. So verbrachte er im Sommer 1853 als erster Forscher längere Zeit bei den Korjaken auf der Halbinsel Tajgonos. Der 1900 erschienene zweite Teil seines Werkes enthält die systematische Darstellung der Natur und der Geschichte Kamčatkas sowie ein geografisches Lexikon.
http://repo.kscnet.ru/564/ [связанный ресурс]
Fedotov S.A., Balesta S.T., Droznin V.A., Masurenkov Yu.P., Sugrobov V.M. On a Possibility of Heat Utilization of the Avachinsky Volcanic Chamber // Proceedings Second United Nations Symposium on the Development and Use of Geothermal Resources. 1976. V. 1. P. 363-369.    Аннотация
The sources of geothermal energy of Kamchatka are hydrothermal systems, local blocks of high heated rocks, and peripheral magma chambers of active volcanoes in particular. According to gravimetric, magnetic and seismic data, under the Avachinsky volcano there exists an anomalous zone which is suspected to be a peripheral magma chamber. It is localized at the boundary of the Upper Cretaceous basement and an overlying volcanogenous stratum at a depth of 1.5 km from sea level. Its geophysical data are as follows: the radius is 5.2±0.9 km; the density of rocks is 2.85 to 3.15 g/cm3, the velocity of longitudinal waves is 2200 m/sec, the viscosity of rocks is 105 to 108 poise. The temperature distribution in the near-chamber zone was calculated by clcctrointegrator at 0°C at the Earth's surface and 1000°C at the chamber surface for stationary and non-stationary (the period of 20 000 years) heating. Heat extraction may be possible if a system of artificial jointing iscreated. The capacity of a thermal reservoir with a volume of one cubic km at a depth of 5 km and a distance of 6 km from the volcano would be 2 x Ю14 kcal, extractable under non-stationary conditions, which could provide the work of power stations with a total capacity of 250 MW for a period of 100 years.
Fedotov S.A., Sugrobov V.M., Utkin I.S., Utkina L.I. On the possibility of using heat stored in the magma chamber of the Avachinsky volcano and the surrounding rock for heat and power supply // Journal of Volcanology and Seismology. 2007. V. 1. № 1. P. 28-41. doi:10.1134/S0742046307010022.    Аннотация
The results of geological and geophysical studies, including recent ones, which make it possible to verify the existence of a liquid magma chamber below the Avachinsky volcano on Kamchatka, and to estimate the chamber depth and approximate dimensions, are analyzed. The heat stored in the host rock heated by the volcanic magma chamber from the time of chamber origination to the present is estimated, taking variable chamber dimensions during the process of evolution into account. The geological-geophysical prerequisites for using the thermal energy of the heated rock which surrounds the magma chamber to supply heat and power to Petropavlovsk-Kamchatskii are analyzed. The creation of an underground geothermal circulation system (fracture heat exchanger) using deep boreholes is proposed.
http://repo.kscnet.ru/10/ [связанный ресурс]
Gusev A.A., Ponomareva V.V., Braitseva O.A., Melekestsev I.V., Sulerzhitsky L.D. Great explosive eruptions on Kamchatka during the last 10,000 years: Self-similar irregularity of the output of volcanic products // Journal of Geophysical Research. 2003. V. 108. № B2. doi:10.1029/2001JB000312.    Аннотация
Temporal irregularity of the output of volcanic material is studied for the sequence of large (V ≥ 0.5 km3, N = 29) explosive eruptions on Kamchatka during the last 10,000 years. Informally, volcanic productivity looks episodic, and dates of eruptions cluster. To investigate the probable self-similar clustering behavior of eruption times, we determine correlation dimension Dc. For intervals between events 800 and 10,000 years, Dc ≈ 1 (no self-similar clustering). However, for shorter delays, Dc = 0.71, and the significance level for the hypothesis Dc < 1 is 2.5%. For the temporal structure of the output of volcanic products (i.e., for the sequence of variable-weight points), a self-similar “episodic” behavior holds over the entire range of delays 100–10,000 years, with Dc = 0.67 (Dc < 1 at 3.4% significance). This behavior is produced partly by the mentioned common clustering of event dates, and partly by another specific property of the event sequence, that we call “order clustering”. This kind of clustering is a property of a time-ordered list of eruptions, and is manifested as the tendency of the largest eruptions (as opposed to smaller ones) to be close neighbors in this list. Another statistical technique, of “rescaled range” (R/S), confirms these results. Similar but weaker-expressed behavior was also found for two other data sets: historical Kamchatka eruptions and acid layers in Greenland ice column. The episodic multiscaled mode of the output of volcanic material may be a characteristic property of a sequence of eruptions in an island arc, with important consequences for climate forcing by volcanic aerosol, and volcanic hazard.
Holocene Volcanoes in Kamchatka. Institute of Volcanology and Seismology FEB RAS. 2002.
Ionov D.A., Bénard A., Plechov P.Yu., Shcherbakov V.D. Along-arc variations in lithospheric mantle compositions in Kamchatka, Russia: First trace element data on mantle xenoliths from the Klyuchevskoy Group volcanoes // Journal of Volcanology and Geothermal Research. 2013. V. 263. P. 122 - 131. doi: 10.1016/j.jvolgeores.2012.12.022.    Аннотация
Abstract We provide results of a detailed study of the first peridotite xenoliths of proven mantle origin reported from Bezymyanny volcano in the Klyuchevskoy Group, northern Kamchatka arc. The xenoliths are coarse spinel harzburgites made up mainly of Mg-rich olivine as well as subhedral orthopyroxene (opx) and Cr-rich spinel, and also contain fine-grained interstitial pyroxenes, amphibole and feldspar. The samples are unique in preserving the evidence for both initial arc mantle substrate produced by high-degree melt extraction and subsequent enrichment events. We show that the textures, modal and major oxide compositions of the Bezymyanny xenoliths are generally similar to those of spinel harzburgite xenoliths from Avacha volcano in southern Kamchatka. However, coarse opx from the Bezymyanny harzburgites has higher abundances of light and medium rare earth elements and other highly incompatible elements than coarse opx from the Avacha harzburgites. We infer that (1) the sub-arc lithospheric mantle beneath both Avacha and Bezymyanny (and possibly between these volcanoes) consists predominantly of harzburgitic melting residues, which experienced metasomatism by slab-related fluids or low-fraction, fluid-rich melts and (2) the degrees of metasomatism are higher beneath Bezymyanny. By contrast, xenolith suites from Shiveluch and Kharchinsky volcanoes 50–100 km north of the Klyuchevskoy Group include abundant cumulates and products of reaction of mantle rocks with silicate melts at high melt/rock ratios. The high melt flux through the lithospheric mantle beneath Shiveluch and Kharchinsky may be related to the asthenospheric flow around the northern edge of the sinking Pacific plate; lateral propagation of fluids in the mantle wedge south of the plate edge may contribute to metasomatism in the mantle lithosphere beneath the Klyuchevskoy Group volcanoes.
Ishimaru Satoko, Arai Shoji Highly silicic glasses in peridotite xenoliths from Avacha volcano, Kamchatka arc; implications for melting and metasomatism within the sub-arc mantle // Lithos. 2009. V. 107. № 1–2. P. 93 - 106. doi: 10.1016/j.lithos.2008.07.005.    Аннотация
Silicate glasses in peridotite xenoliths from Avacha volcano have high SiO2 (up to 72 wt.) and highly SiO2-oversaturated characteristics; normative quartz content is up to 50 wt.. The glasses represent secondary melts solidified after interaction with mantle peridotite, i.e. crystallization of secondary orthopyroxene at the expense of olivine. We identified two kinds of silicate glasses in Avacha peridotites; one is higher in K2O and enriched in Rb, Ba, U, and Pb than the other. The glasses show basically similar chemical characteristics to the host basaltic andesite to andesite of the Avacha volcano. These chemical characteristics are inherited from slab-derived fluids/melts, which metasomatize the mantle wedge and induce partial melting. The differences of chemical features among the Avacha glasses are attributed to chemical difference of the slab-derived fluids/melts, possibly due to the difference of sediments/basalt ratio of the relevant slab. The low-degree partial melt of peridotite assisted by these fluids/melts, is primarily SiO2-oversaturated, and can conduct silicate metasomatism, evolving through interaction with surrounding mantle peridotite, i.e. formation of orthopyroxene at the expense of olivine. Highly silicic glasses, also reported from peridotite xenoliths from oceanic hotspots and continental rift zones, mostly result from assimilation of orthopyroxene by SiO2-undersaturated melts, which crystallize clinopyroxene and olivine. The glasses also show similar trace-element patterns to their host alkali basaltic magmas, as in the case of arc glasses/calc-alkali magmas. If the glasses in peridotite xenoliths are of silicate metasomatism origin, they are similar in chemistry to host magmas. Reaction between carbonatite melts and peridotites shows the same petrographical feature as that of SiO2-undersaturated silicate melts with peridotites. The glasses originated from carbonatite metasomatism, however, exhibit clearly different trace-element patterns from their host alkali basaltic magmas.
Ishimaru Satoko, Arai Shoji, Shukuno Hiroshi Metal-saturated peridotite in the mantle wedge inferred from metal-bearing peridotite xenoliths from Avacha volcano, Kamchatka // Earth and Planetary Science Letters. 2009. V. 284. № 3–4. P. 352 - 360. doi: 10.1016/j.epsl.2009.04.042.    Аннотация
Lithospheric mantle is inferred to be more oxidized than the asthenosphere, and mantle-wedge peridotites are characterized by high oxidation state relative to abyssal and continental peridotites due to addition of slab-derived fluids or melts. We found metals (native Ni, Fe silicides, native Fe and possible native Ti) from otherwise oxidized sub-arc mantle peridotite xenoliths from Avacha volcano, Kamchatka. This is contrary to the consensus and experimental results that the metals are stable only in deeper parts of the mantle (> 250 km). The metals from Avacha are different in chemistry and petrography from those in serpentinized peridotites. The Avacha metals are characteristically out of chemical equilibrium between individual grains as well as with surrounding peridotite minerals. This indicates their independent formation from different fluids. Some of the Avacha metals form inclusion trails with fluids and pyroxenes, leading to the inference that very local metal saturation resulted from rapid supply (‘flashing’) of reducing fluids from deeper levels. The fluids, possibly rich in H2, are formed by serpentinization at the cold base of the mantle wedge just above the slab, and they reduce overlying peridotites. We propose a metal-saturated peridotite layer, underlying the main oxidized portion, within the mantle wedge beneath the volcanic front to fore-arc region.
Koulakov Ivan, Jaxybulatov Kayrly, Shapiro Nikolay M., Abkadyrov Ilyas, Deev Evgeny, Jakovlev Andrey, Kuznetsov Pavel, Gordeev Evgeny, Chebrov Viktor Asymmetric caldera-related structures in the area of the Avacha group of volcanoes in Kamchatka as revealed by ambient noise tomography and deep seismic sounding // Journal of Volcanology and Geothermal Research. 2014. V. 285. P. 36 - 46. doi: 10.1016/j.jvolgeores.2014.08.012.    Аннотация
Avacha group includes two active and potentially dangerous volcanoes, Avachinsky and Koryaksky, located close to Petropavlovsk-Kamchatsky, the main city of Kamchatka. We present the results of two independent seismic studies of shallow crustal structures beneath the Avacha group based on passive and active source observations. The first study is based on the analysis of continuous recording by 11 seismic stations installed over the Avacha group in 2012 and 7 permanent stations in the same region. We present a series of 2D Rayleigh-wave group velocity maps based on correlation of ambient noise, that were then converted into 3D distribution of shear wave velocity. The second work was based on the reprocessing of an active source deep seismic sounding profile across the Avachinsky volcano that was shot in 1982–1984. We made the analysis of travel times of refracted waves using a 2D tomography inversion. The resulting seismic models appear to be consistent with each other and show clear low-velocity zone to the SW of the Avachinsky volcano and high velocity structures to NE. These observations also agree with the existing gravity and magnetotelluric measurements. Based on the obtained seismic models we identify two large buried calderas and large lava flows that are thought to be related to a series of large eruption episodes of Avachinsky occurred within the last 30,000 years.
Kyle Philip R., Ponomareva Vera V., Rourke Schluep Rachelle Geochemical characterization of marker tephra layers from major Holocene eruptions, Kamchatka Peninsula, Russia // International Geology Review. 2011. V. 53. № 9. P. 1059-1097. doi:10.1080/00206810903442162.    Аннотация
Kamchatka Peninsula is one of the most active volcanic regions in the world. Many Holocene explosive eruptions have resulted in widespread dispersal of tephra-fall
deposits. The largest layers have been mapped and dated by the 14C method. The tephra provide valuable stratigraphic markers that constrain the age of many geological
events (e.g. volcanic eruptions, palaeotsunamis, faulting, and so on). This is the first systematic attempt to use electron microprobe (EMP) analyses of glass to characterize
individual tephra deposits in Kamchatka. Eighty-nine glass samples erupted from 11 volcanoes, representing 27 well-identified Holocene key-marker tephra layers, were analysed. The glass is rhyolitic in 21 tephra, dacitic in two, and multimodal in three.
Two tephra are mixed with glass compositions ranging from andesite/dacite to rhyolite. Tephra from the 11 eruptive centres are distinguished by their glass K2O,
CaO, and FeO contents. In some cases, individual tephra from volcanoes with multiple eruptions cannot be differentiated. Trace element compositions of 64 representative
bulk tephra samples erupted from 10 volcanoes were analysed by instrumental neutron activation analysis (INAA) as a pilot study to further refine the geochemical haracteristics; tephra from these volcanoes can be characterized using Cr and Th contents and La/Yb ratios.
Unidentified tephra collected at the islands of Karaginsky (3), Bering (11), and Attu (5) as well as Uka Bay (1) were correlated to known eruptions. Glass compositions and
trace element data from bulk tephra samples show that the Karaginsky Island and Uka Bay tephra were all erupted from the Shiveluch volcano. The 11 Bering Island tephra
are correlated to Kamchatka eruptions. Five tephra from Attu Island in the Aleutians are tentatively correlated with eruptions from the Avachinsky and Shiveluch volcanoes.
Maksimov A.P. A Physicochemical Model for Deep Degassing of Water-Rich Magma // Journal of Volcanology and Seismology. 2008. V. 2. № 5. P. 356-363. doi: 10.1134/S0742046308050059.    Аннотация
Two powerful eruptions of Quizapu vent on Cerro Azul Volcano, Chile are used as examples to discuss
the problem of effusive eruptions of magmas having high preeruptive volatile concentrations. A physicochemical
mechanism is proposed for magma degassing, with the volatiles being lost before coming to the surface.
The model is based on the interaction of magmas residing in chambers at different depths and on the difference
between the solubility of water in the melt and the water equilibrium concentration in a magma body
having a considerable vertical extent. The shallower chamber can accumulate the volatiles released from the
magma that is supplied from the deeper chamber. An explanation is provided of the dramatic differences in the
character of the 1846–1847 and 1932 eruptions, which had identical chemical–petrographic magma compositions.

На примере двух мощных извержений конуса Квицапу вулкана Сьерро-Ассуль (Чили) рассматривается проблема эффузивных извержений магм с высокими предэруптивными содержаниями летучих. Предложен физико-химический механизм дегазации магм с потерей ими летучих до появления на поверхности. Модель основана на взаимодействии магм, находившихся в разных по глубине очагах, и различии между растворимостью воды в расплаве и ее равновесной концентрацией в протяженном по вертикали магматическом теле. При этом малоглубинный очаг может аккумулировать летучие, выделяющиеся из магмы, поступающей в него из глубинного очага. Дается объяснение резких различий в характере извержений 1846–1847 и 1932 г. при идентичном химико-петрографическом составе магм.
http://repo.kscnet.ru/270/ [связанный ресурс]
Maximov A.P., Puzankov M.Yu., Bazanova L.I. The Plumbing System at the Initial Period of the Young Cone Formation, Avachinsky Volcano (Kamchatka) // XXIV IUGG General Assembly. July 2-13, 2007, Perugia, Italy. Perugia, Italy: IUGG. 2007.
McGimsey R.G., Neal C.A., Girina O.A. 2001 Volcanic Activity in Alaska and Kamchatka: Summary of Events and Response of the Alaska Volcano Observatory // Open-File Report 2004-1453. U.S. Department of the Interior. USGS. 2004. 53 p.


Рекомендуемые браузеры для просмотра данного сайта: Google Chrome, Mozilla Firefox, Opera, Yandex. Использование другого браузера может повлечь некорректное отображение содержимого веб-страниц.
Условия использования материалов и сервисов Геопортала

Copyright © Институт вулканологии и сейсмологии ДВО РАН, 2010-2017. Пользовательское соглашение.
Любое использование либо копирование материалов или подборки материалов Геопортала может осуществляться лишь с разрешения правообладателя и только при наличии ссылки на geoportal.kscnet.ru
©Design: roman@kscnet.ru