Главная Вулканы Хангар


Кроноцкий Шмидта
Вулкан Хангар. Библиография

Количество записей: 30
Страницы:  1 2
Bindeman I.N., Leonov V.L., Izbekov P.E., Ponomareva V.V., Watts K.E., Shipley N.K., Perepelov A.B., Bazanova L.I., Jicha B.R., Singer B.S., Schmitt A.K., Portnyagin M.V., Chen C.H. Large-volume silicic volcanism in Kamchatka: Ar–Ar and U–Pb ages, isotopic, and geochemical characteristics of major pre-Holocene caldera-forming eruptions // Journal of Volcanology and Geothermal Research. 2010. V. 189. № 1-2. P. 57-80. doi:10.1016/j.jvolgeores.2009.10.009.    Аннотация
The Kamchatka Peninsula in far eastern Russia represents the most volcanically active arc in the world in terms of magma production and the number of explosive eruptions. We investigate large-scale silicic volcanism in the past several million years and present new geochronologic results from major ignimbrite sheets exposed in Kamchatka. These ignimbrites are found in the vicinity of morphologically-preserved rims of partially eroded source calderas with diameters from ∼ 2 to ∼ 30 km and with estimated volumes of eruptions ranging from 10 to several hundred cubic kilometers of magma. We also identify and date two of the largest ignimbrites: Golygin Ignimbrite in southern Kamchatka (0.45 Ma), and Karymshina River Ignimbrites (1.78 Ma) in south-central Kamchatka. We present whole-rock geochemical analyses that can be used to correlate ignimbrites laterally. These large-volume ignimbrites sample a significant proportion of remelted Kamchatkan crust as constrained by the oxygen isotopes. Oxygen isotope analyses of minerals and matrix span a 3‰ range with a significant proportion of moderately low-δ18O values. This suggests that the source for these ignimbrites involved a hydrothermally-altered shallow crust, while participation of the Cretaceous siliceous basement is also evidenced by moderately elevated δ18O and Sr isotopes and xenocryst contamination in two volcanoes. The majority of dates obtained for caldera-forming eruptions coincide with glacial stages in accordance with the sediment record in the NW Pacific, suggesting an increase in explosive volcanic activity since the onset of the last glaciation 2.6 Ma. Rapid changes in ice volume during glacial times and the resulting fluctuation of glacial loading/unloading could have caused volatile saturation in shallow magma chambers and, in combination with availability of low-δ18O glacial meltwaters, increased the proportion of explosive vs effusive eruptions. The presented results provide new constraints on Pliocene–Pleistocene volcanic activity in Kamchatka, and thus constrain an important component of the Pacific Ring of Fire.
Braitseva O.A., Melekestsev I.V., Ponomareva V.V., Sulerzhitskii L.D. The ages of calderas, large explosive craters and active volcanoes in the Kuril-Kamchatka region, Russia // Bulletin of Volcanology. 1995. V. 57. № 6. P. 383-402. doi: 10.1007/BF00300984.    Аннотация
The ages of most of calderas, large explosive craters and active volcanoes in the Kuril-Kamchatka region have been determined by extensive geological, geomorphological, tephrochronological and isotopic geochronological studies, including more than 600 14C dates. Eight ‘Krakatoa-type’ and three ‘Hawaiian-type’ calderas and no less than three large explosive craters formed here during the Holocene. Most of the Late Pleistocene Krakatoa-type calderas were established around 30 000–40 000 years ago. The active volcanoes are geologically very young, with maximum ages of about 40 000–50 000 years. The overwhelming majority of recently active volcanic cones originated at the very end of the Late Pleistocene or in the Holocene. These studies show that all Holocene stratovolcanoes in Kamchatka were emplaced in the Holocene only in the Eastern volcanic belt. Periods of synchronous, intensified Holocene volcanic activity occurred within the time intervals of 7500–7800 and 1300–1800 14C years BP.
Braitseva O.A., Sulerzhitsky L.D., Litasova S.N., Melekestsev I.V., Ponomareva V.V. Radiocarbon dating and tephrochronology in Kamchatka // Radiocarbon. 1993. V. 35. № 3. P. 463-476.    Аннотация
We discuss results of 14C dates obtained from areas of young volcanoes in Kamchatka. We apply these dates to reconstructing regional volcanic activity during the Holocene.
Braitseva Olga A., Ponomareva Vera V., Sulerzhitsky Leopold D., Melekestsev Ivan V., Bailey John Holocene Key-Marker Tephra Layers in Kamchatka, Russia // Quaternary Research. 1997. V. 47. № 2. P. 125-139. doi:10.1006/qres.1996.1876.    Аннотация
Detailed tephrochronological studies in Kamchatka Peninsula, Russia, permitted documentation of 24 Holocene key-marker tephra layers related to the largest explosive eruptions from 11 volcanic centers. Each layer was traced for tens to hundreds of kilometers away from the source volcano; its stratigraphic position, area of dispersal, age, characteristic features of grain-size distribution, and chemical and mineral composition confirmed its identification. The most important marker tephra horizons covering a large part of the peninsula are (from north to south; ages given in 14C yr B.P.) SH2(≈1000 yr B.P.) and SH3(≈1400 yr B.P.) from Shiveluch volcano; KZ (≈7500 yr B.P.) from Kizimen volcano; KRM (≈7900 yr B.P.) from Karymsky caldera; KHG (≈7000 yr B.P.) from Khangar volcano; AV1(≈3500 yr B.P.), AV2(≈4000 yr B.P.), AV4(≈5500 yr B.P.), and AV5(≈5600 yr B.P.) from Avachinsky volcano; OP (≈1500 yr B.P.) from the Baraniy Amfiteatr crater at Opala volcano; KHD (≈2800 yr B.P.) from the “maar” at Khodutka volcano; KS1(≈1800 yr B.P.) and KS2(≈6000 yr B.P.) from the Ksudach calderas; KSht3(A.D. 1907) from Shtyubel cone in Ksudach volcanic massif; and KO (≈7700 yr B.P.) from the Kuril Lake-Iliinsky caldera. Tephra layers SH5(≈2600 yr B.P.) from Shiveluch volcano, AV3(≈4500 yr B.P.) from Avachinsky volcano, OPtr(≈4600 yr B.P.) from Opala volcano, KS3(≈6100 yr B.P.) and KS4(≈8800 yr B.P.) from Ksudach calderas, KSht1(≈1100 yr B.P.) from Shtyubel cone, and ZLT (≈4600 yr B.P.) from Iliinsky volcano cover smaller areas and have local stratigraphic value, as do the ash layers from the historically recorded eruptions of Shiveluch (SH1964) and Bezymianny (B1956) volcanoes. The dated tephra layers provide a record of the most voluminous explosive events in Kamchatka during the Holocene and form a tephrochronological timescale for dating and correlating various deposits.
Dirksen O., van den Bogaard C., Danhara T., Diekmann B. Tephrochronological investigation at Dvuh-yurtochnoe lake area, Kamchatka: Numerous landslides and lake tsunami, and their environmental impacts // Quaternary International. 2011. V. 246. № 1-2. P. 298 - 311. doi: 10.1016/j.quaint.2011.08.032.    Аннотация
Distal volcanic tephras in soil sections and lake sediments in the Dvuh-yurtochnoe (Two-Yurts) lake area, central Kamchatka, were investigated in order to provide a chronological framework for the reconstruction of late Quaternary landscape development. Mineralogical and geochemical data point to sources from 5 volcanoes. Ten tephra layers were identified and correlated to known eruptive events. The ages were corroborated by radiocarbon dating of the soil sections around Two-Yurts lake. These findings allow the reconstruction of regional paleoenvironmental change, recorded in the soil sections around Two-Yurts lake. During the Last Glacial Maximum (LGM) time, the area was affected by glacial advances that produced the glacial moraines at the eastern outlet of the lake. A large landslide, ca. 15,000–18,000 14C BP, dammed the valley and led to formation of Two-Yurts lake. Several more landslide events can be recognized in the Holocene, and one affected Two-Yurts lake ca. 3000 14C BP. This event produced a “tsunami”, documented by poorly sorted deposits with rounded pebbles in the onshore sections around the lake. In contrast to the soil sections, tephras buried in the “soupy” lacustrine sediments of Two-Yurts lake are not well preserved and show inconsistent age-depth relationships compared to those suggested by radiocarbon dating, due to sinking through the lake sediments. Nevertheless, tephrochronological data revealed the strong impact of terrestrial landslides on lake sedimentation.
Gusev A.A., Ponomareva V.V., Braitseva O.A., Melekestsev I.V., Sulerzhitsky L.D. Great explosive eruptions on Kamchatka during the last 10,000 years: Self-similar irregularity of the output of volcanic products // Journal of Geophysical Research. 2003. V. 108. № B2. doi:10.1029/2001JB000312.    Аннотация
Temporal irregularity of the output of volcanic material is studied for the sequence of large (V ≥ 0.5 km3, N = 29) explosive eruptions on Kamchatka during the last 10,000 years. Informally, volcanic productivity looks episodic, and dates of eruptions cluster. To investigate the probable self-similar clustering behavior of eruption times, we determine correlation dimension Dc. For intervals between events 800 and 10,000 years, Dc ≈ 1 (no self-similar clustering). However, for shorter delays, Dc = 0.71, and the significance level for the hypothesis Dc < 1 is 2.5%. For the temporal structure of the output of volcanic products (i.e., for the sequence of variable-weight points), a self-similar “episodic” behavior holds over the entire range of delays 100–10,000 years, with Dc = 0.67 (Dc < 1 at 3.4% significance). This behavior is produced partly by the mentioned common clustering of event dates, and partly by another specific property of the event sequence, that we call “order clustering”. This kind of clustering is a property of a time-ordered list of eruptions, and is manifested as the tendency of the largest eruptions (as opposed to smaller ones) to be close neighbors in this list. Another statistical technique, of “rescaled range” (R/S), confirms these results. Similar but weaker-expressed behavior was also found for two other data sets: historical Kamchatka eruptions and acid layers in Greenland ice column. The episodic multiscaled mode of the output of volcanic material may be a characteristic property of a sequence of eruptions in an island arc, with important consequences for climate forcing by volcanic aerosol, and volcanic hazard.
Holocene Volcanoes in Kamchatka. Institute of Volcanology and Seismology FEB RAS. 2002.
Kyle Philip R., Ponomareva Vera V., Rourke Schluep Rachelle Geochemical characterization of marker tephra layers from major Holocene eruptions, Kamchatka Peninsula, Russia // International Geology Review. 2011. V. 53. № 9. P. 1059-1097. doi:10.1080/00206810903442162.    Аннотация
Kamchatka Peninsula is one of the most active volcanic regions in the world. Many Holocene explosive eruptions have resulted in widespread dispersal of tephra-fall
deposits. The largest layers have been mapped and dated by the 14C method. The tephra provide valuable stratigraphic markers that constrain the age of many geological
events (e.g. volcanic eruptions, palaeotsunamis, faulting, and so on). This is the first systematic attempt to use electron microprobe (EMP) analyses of glass to characterize
individual tephra deposits in Kamchatka. Eighty-nine glass samples erupted from 11 volcanoes, representing 27 well-identified Holocene key-marker tephra layers, were analysed. The glass is rhyolitic in 21 tephra, dacitic in two, and multimodal in three.
Two tephra are mixed with glass compositions ranging from andesite/dacite to rhyolite. Tephra from the 11 eruptive centres are distinguished by their glass K2O,
CaO, and FeO contents. In some cases, individual tephra from volcanoes with multiple eruptions cannot be differentiated. Trace element compositions of 64 representative
bulk tephra samples erupted from 10 volcanoes were analysed by instrumental neutron activation analysis (INAA) as a pilot study to further refine the geochemical haracteristics; tephra from these volcanoes can be characterized using Cr and Th contents and La/Yb ratios.
Unidentified tephra collected at the islands of Karaginsky (3), Bering (11), and Attu (5) as well as Uka Bay (1) were correlated to known eruptions. Glass compositions and
trace element data from bulk tephra samples show that the Karaginsky Island and Uka Bay tephra were all erupted from the Shiveluch volcano. The 11 Bering Island tephra
are correlated to Kamchatka eruptions. Five tephra from Attu Island in the Aleutians are tentatively correlated with eruptions from the Avachinsky and Shiveluch volcanoes.
Ponomareva Vera A chronology of the Holocene eruptions from the northern Kamchatka volcanoes based on linking major C14-dated tephra sequences with the help of EMPA glass data // Quaternary International. 2012. V. 279–28. P. 383 doi: 10.1016/j.quaint.2012.08.1191.    Аннотация
Volcanic eruptions from Kamchatka have deposited many unique tephra layers over a large region within the North Pacific, providing important isochrons between key sites such as marine ODP core 883 (Pacific Ocean, Detroit Seamount) and Elgygytgyn Lake (Chukotka, eastern Siberia). Here we present a compilation of C14 dates on major Holocene tephras from the volcanically highly active region, based on decades of detailed stratigraphical fieldwork on Shiveluch, Kliuchevskoy, and other volcanoes.The 12-m thick tephra sequence at the Kliuchevskoy slope has been continuously accumulating during the last ∼11 ka. It contains over 200 visible individual tephra layers and no datable organic material. The section is dominated by dark-gray mafic cinders related to Kliuchevskoy activity. In addition, it contains 30 light-colored thin layers of silicic tephra from distant volcanoes including 11 layers from Shiveluch volcano located only 65 km to the north. We have used EMPA glass analysis to correlate most of the marker tephra layers to their source eruptions dated earlier by C14 (Braitseva et al., 1997; Ponomareva et al., 2007), and in this way linked Kliuchevskoy tephra sequence to sequences at other volcanoes including Shiveluch. The C14 dates and tephras from the northern Kamchatka are then combined into a single Bayesian framework taking into account stratigraphical ordering within and between the sites. This approach has allowed us to enhance the reliability and precision of the estimated ages for the eruptions. Age-depth models are constructed to analyse changes in deposition rates and volcanic activity throughout the Holocene. This detailed chronology of the eruptions serves as a basis for understanding temporal patterns in the eruption sequence and geochemical variations of magmas. This research could prove important for the long-term forecast of eruptions and volcanic hazards.
Siebert L., Simkin T. Volcanoes of the World: an Illustrated Catalog of Holocene Volcanoes and their Eruptions. Smithsonian Institution, Global Volcanism Program Digital Information Series, GVP-3. 2013.
Siebert L., Simkin T., Kimberly P. Volcanoes of the World. Berkeley: University of California Press. 2010. 568 p.    Аннотация
This impressive scientific resource presents up-to-date information on ten thousand years of volcanic activity on Earth. In the decade and a half since the previous edition was published new studies have refined assessments of the ages of many volcanoes, and several thousand new eruptions have been documented. This edition updates the book's key components: a directory of volcanoes active during the Holocene; a chronology of eruptions over the past ten thousand years; a gazetteer of volcano names, synonyms, and subsidiary features; an extensive list of references; and an introduction placing these data in context. This edition also includes new photographs, data on the most common rock types forming each volcano, information on population densities near volcanoes, and other features, making it the most comprehensive source available on Earth's dynamic volcanism.
VONA/KVERT Information Releases. KVERT, Institute of Volcanology and Seismology FEB RAS. 2005.
Volcano observatory notification to aviation (VONA/KVERT). KVERT, Institute of Volcanology and Seismology FEB RAS. 2011.
Zubov A.G., Kirianov V.Yu., Hughes S.R., Kurbatov A. To use of thermomagnetic parameters to identify tephra // AGU Meeting-99. Abstracts., 1999 г. 1999.    Аннотация
О возможности использования термомагнитных параметров для идентификации вулканических пеплов
http://repo.kscnet.ru/295/ [связанный ресурс]
http://repo.kscnet.ru/298/ [связанный ресурс]
Апродов В.А. Вулканы. М.: Мысль. 1982. 367 с.
Базанова Л.И., Певзнер М.М. Хангар - еще один действующий вулкан на Камчатке // Доклады Академии наук. 2001. Т. 377. № 6. С. 800-802.
Влодавец В.И. Рассеянные элементы в вулканических продуктах // Труды Лаборатории вулканологии АН СССР. 1958. № 13. С. 137-154.
Зубов А.Г., Кирьянов В.Ю. О возможности использования термомагнитных параметров для идентификации вулканических пеплов // Геодинамика и вулканизм Курило-Камчатской островодужной системы. Петропавловск-Камчатский: ГЕОС. 2001. С. 267-273.    Аннотация
Вулканический пепел - удобный инструмент изучения истории вулканических извержений, поскольку может быть обнаружен на большом расстоянии от источника, сохраняется в захороненном состоянии длительное время,имеет генетически обусловленный минералогический состав. Существенным недостатком подавляющего большинства известных методик исследований пород является их структурная чувствительность. А это препятствует идентификации отложений пеплов единого источника происхождения, но с разной структурой. Чувствительностью к магнито-минеральному составу и отсутствием структурной чувствительности обладает такие термомагнитные параметры как температура Кюри (Tc), намагниченность насыщения и поле насыщения. Наиболее чувствительным для нахождения Tc является анализ температурной зависимости магнитной восприимчивости или индуктивной намагниченности. Наличие пиков вблизи TC для мономинеральных фракций (эффект Гопкинсона) позволяет при работе со смесями магнитных минералов более уверенно определять на кривой индивидуальные для минералов Tc.

Volcanic ash is a useful tool for investigation of the history of volcanic eruptions as it can be found far from
eruptive centers, and is preserved for a long time after initial deposition and has a constant mineral composition.
Imperfection of most methodical investigations of volcanic ashes is their texture sensibility. This factor make difficult
to identify volcanic ashes from the same volcano. Some magnetic properties, saturation magnetization, saturation magnetization field, and Curie Point (Tc) of magnetic minerals, however, are not sensitive to texture, but they are sensitive to magnetic-mineral composition. A more sensitive method for determining the Tc- point is the analysis of the temperature dependence of magnetic susceptibility or of inductive magnetization. The presence of peaks on the curve near the Tc-point for the monomineralic fractions (Hopkinson’s peak) helps to more carefully define individual Tc on the curve for natural mixtures of the different magnetic minerals.
http://repo.kscnet.ru/295/ [связанный ресурс]
http://repo.kscnet.ru/299/ [связанный ресурс]
Маренина Т.Ю. Вулкан Хангар в Срединном хребте Камчатки // Труды Лаборатории вулканологии АН СССР. 1959. № 17. С. 3-63.
Мелекесцев И.В. Действующие и потенциально активные вулканы Курило - Камчатской островной дуги в начале XXI в.: этапы исследований, определение термина "действующий вулкан", будущие извержения и вулканическая опасность // Вестник КРАУНЦ. Серия: Науки о Земле. 2006. Вып. 7. № 1. С. 15-35.    Аннотация
Выделены и рассмотрены три этапа исследований действующих и потенциально активных вулканов Камчатки и Курильских островов – ранний (1700-1935 гг.), новый (1935-1962 гг.) и новейший (1962 г.- настоящее время). Дано новое, впервые научно обоснованное определение термина «действующий вулкан». Представлены модифицированные каталоги действующих и потенциально активных вулканов Камчатки и Курильских островов. Для типичных вулканов, находящихся в I и II стадиях развития, даны долгосрочный прогноз характера и параметров будущих извержений, связанной с ними вулканической опасности.

Three stages of study of active and potentially active volcanoes on Kamchatka and the Kurile Islands were distinguished: the anterior stage (1700-1935), the new stage (1935-1962) and the recent stage (from 1962 till present time).
This paper provides a new, for the first time scientifically based term of «active volcano». Updated catalogues display active and potentially active volcanoes of Kamchatka and the Kurile Islands. Here we propose a long-term forecast of behavior and parameters of impending eruptions and related volcanic hazards for the typical volcanoes of the 1st and the 2nd stages of evolution.


Рекомендуемые браузеры для просмотра данного сайта: Google Chrome, Mozilla Firefox, Opera, Yandex. Использование другого браузера может повлечь некорректное отображение содержимого веб-страниц.
Условия использования материалов и сервисов Геопортала

Copyright © Институт вулканологии и сейсмологии ДВО РАН, 2010-2017. Пользовательское соглашение.
Любое использование либо копирование материалов или подборки материалов Геопортала может осуществляться лишь с разрешения правообладателя и только при наличии ссылки на geoportal.kscnet.ru
©Design: roman@kscnet.ru