Nikolka Volcano. Bibliography
Group by:  
Records: 6
Pages:  1
Churikova T., Dorendorf F., Wörner G. Sources and Fluids in the Mantle Wedge below Kamchatka, Evidence from Across-arc Geochemical Variation // Journal of Petrology. 2001. Vol. 42. № 8. P. 1567-1593. doi:10.1093/petrology/42.8.1567.
Major and trace element and Sr–Nd–Pb isotopic variations in mafic volcanic rocks hve been studied in a 220 km transect across the Kamchatka arc from the Eastern Volcanic Front, over the Central Kamchatka Depression to the Sredinny Ridge in the back-arc. Thirteen volcanoes and lava fields, from 110 to 400 km above the subducted slab, were sampled. This allows us to characterize spatial variations and the relative amount and composition of the slab fluid involved in magma genesis. Typical Kamchatka arc basalts, normalized for fractionation to 6% MgO, display a strong increase in large ion lithophile, light rare earth and high field strength elements from the arc front to the back-arc. Ba/Zr and Ce/Pb ratios, however, are nearly constant across the arc, which suggests a similar fluid input for Ba and Pb. La/Yb and Nb/Zr increase from the arc front to the back-arc. Rocks from the Central Kamchatka Depression range in 87Sr/86Sr from 0·70334 to 0·70366, but have almost constant Nd isotopic compositions (143Nd/144Nd 0·51307–0·51312). This correlates with the highest U/Th ratios in these rocks. Pb-isotopic ratios are mid-ocean ridge basalt (MORB)-like but decrease slightly from the volcanic front to the back-arc. The initial mantle source ranged from N-MORB-like in the volcanic front and Central Kamchatka Depression to more enriched in the back-arc. This enriched component is similar to an ocean-island basalt (OIB) source. Variations in (CaO)6·0–(Na2O)6·0 show that degree of melting decreases from the arc front to the Central Kamchatka Depression and remains constant from there to the Sredinny Ridge. Calculated fluid compositions have a similar trace element pattern across the arc, although minor differences are implied. A model is presented that quantifies the various mantle components (variably depleted N-MORB-mantle and enriched OIB-mantle) and the fluid compositions added to this mantle wedge. The amount of fluid added ranges from 0·7 to 2·1%. The degree of melting changes from ∼20% at the arc front to <10% below the back-arc region. The rocks from volcanoes of the northern part of the Central Kamchatka Depression—to the north of the transect considered in this study—are significantly different in their trace element compositions compared with the other rocks of the transect and their source appears to have been enriched by a component derived from melting of the edge of the ruptured slab.
Гирина О.А. О некоторых особенностях тектоники Северной группы вулканов Камчатки // Геологические процессы в обстановках субдукции, коллизии и скольжения литосферных плит. Материалы Второй Всероссийской конференции с международным участием, Владивосток, 17–20 сентября 2014 г. Владивосток: Дальнаука. 2014. С. 30-32.
Иванов Б.В. Андезиты Камчатки (справочник химических анализов вулканитов и основных породообразующих минералов) / Отв. ред. Колосков А.В. М.: Наука. 2008. 364 с.
This book is the first work that provides the ultimate data about chemical composition of the Kamchatka Quaternary andesites. Besides the book provides data about a phase analysis of andesites, geochemical composition, REE composition and isotopic analysis of strontium, neodymium and oxygen. The analyses are prominent for their stratification and accurate geological positioning. This allows understanding how the geological events alternated. The paper is focused on the petrogenetic peculiarities of tholeiitic (the 1st type of mantle genesis) and calc-alkali (the 2nd type of mantle-crust genesis) andesites. The book stresses that petrochemical, petrological and isotopic-geochemical correlators play a great role in distinguishing of those two types of andesites. On the basis of petrochemical database we distinguished three trends of the volcanites differentiation: stable, unstable and intermediate. These trends are supposed to be used for the determination of the volcanic activity character and types of the volcanic eruptions.
This book will be helpful as a reference guide to volcanologists, petrographers, geochemists and geologists, to those who study the genesis of volcanic rocks.
Колосков А.В. Изотопно-геохимическая неоднородность плиоцен-четвертичных вулканитов Камчатки и проблема астеносферного диапиризма // Вестник КРАУНЦ. Серия: Науки о Земле. 2020. Вып. 47. № 3. С. 25-57. doi: 10.31431/1816-5524-2020-47-3-25-57.
Isotope-geochemical material for Pliocene-Quaternary volcanoes of the Kamchatka region is generalized on a cartographic basis. The Sr-isotope anomalies of moderate and elevated radiogenicity, geochemically confirmed, are spatially conjugated. This made it possible to interpret these anomalies not only as a reflection of mantle plume material in the composition of volcanic rocks, but also of its hybrid environment, as a consequence of plum-lithosphere remobilization. The presence of multi-directional geochemical trends made it possible to propose the concept of moving boundary values for the composition of indicator rocks of the intraplate type and adakites, which significantly expanded the possibilities of their diagnostics. The isotope-geochemical heterogeneity of basaltoids of the region is generally determined by the peculiarities of concentration of rocks with intraplate and adakite geochemical characteristics, which allows considering the asthenospheric diapirism as the main factor of petrogenesis of Pliocene-Quaternary volcanism in Kamchatka.
Набоко С.И. Современные вулканы и газо-гидротермальная деятельность / Геология СССР. М.: Недра. 1964. Т. 31. С. 303-372.
Новейший и современный вулканизм на территории России / Отв. ред. Лаверов Н.П. М.: Наука. 2005. 604 с.
The actual collective monograph presents the results of both theoretical and experimental studies of the multi-disciplinary problem on volcanic hazard assessment and development of techniques for prediction of catastophic eruptions. The volcanism of Kamchatka and other regions of Russia has been analyzed. On the basis of geological, volcanological and tephrachronological studies including radiocarbon dating, there have been defined certain groups of volcanoes on different stages of evolution. At the same time the problem of determination of the internal structure of volcanic dome using modem theoretical methods and technologies is well investigated. The new techniques of estimation of volcanic hazard were developed. Whenever ti is required, theoretical approaches are confirmed by results of in-field observations.

The book will satisfy the needs of Earth sciences specialists from a variety of backgrounds, volcanology, geo-mechanics, ecology, industrial constuction applications and hazard assessment.