Вулкан Академии Наук. Библиография
Группировать:  
Записей: 46
Страницы:  1 2 3 4 5
Belousov Alexander, Belousova Marina Formation of partially submerged tuff ring during the 1996 sublacustrine surtseyan eruption in Karymskoye lake, Kamchatka,Russia // Terra Nostra. International Maar Conference: GeoForschungs Zentrum Potsdam. 2000. Vol. 6. P. 42-52.
Bindeman I.N., Leonov V.L., Izbekov P.E., Ponomareva V.V., Watts K.E., Shipley N.K., Perepelov A.B., Bazanova L.I., Jicha B.R., Singer B.S., Schmitt A.K., Portnyagin M.V., Chen C.H. Large-volume silicic volcanism in Kamchatka: Ar–Ar and U–Pb ages, isotopic, and geochemical characteristics of major pre-Holocene caldera-forming eruptions // Journal of Volcanology and Geothermal Research. 2010. Vol. 189. № 1-2. P. 57-80. doi:10.1016/j.jvolgeores.2009.10.009.
   Аннотация
The Kamchatka Peninsula in far eastern Russia represents the most volcanically active arc in the world in terms of magma production and the number of explosive eruptions. We investigate large-scale silicic volcanism in the past several million years and present new geochronologic results from major ignimbrite sheets exposed in Kamchatka. These ignimbrites are found in the vicinity of morphologically-preserved rims of partially eroded source calderas with diameters from ∼ 2 to ∼ 30 km and with estimated volumes of eruptions ranging from 10 to several hundred cubic kilometers of magma. We also identify and date two of the largest ignimbrites: Golygin Ignimbrite in southern Kamchatka (0.45 Ma), and Karymshina River Ignimbrites (1.78 Ma) in south-central Kamchatka. We present whole-rock geochemical analyses that can be used to correlate ignimbrites laterally. These large-volume ignimbrites sample a significant proportion of remelted Kamchatkan crust as constrained by the oxygen isotopes. Oxygen isotope analyses of minerals and matrix span a 3‰ range with a significant proportion of moderately low-δ18O values. This suggests that the source for these ignimbrites involved a hydrothermally-altered shallow crust, while participation of the Cretaceous siliceous basement is also evidenced by moderately elevated δ18O and Sr isotopes and xenocryst contamination in two volcanoes. The majority of dates obtained for caldera-forming eruptions coincide with glacial stages in accordance with the sediment record in the NW Pacific, suggesting an increase in explosive volcanic activity since the onset of the last glaciation 2.6 Ma. Rapid changes in ice volume during glacial times and the resulting fluctuation of glacial loading/unloading could have caused volatile saturation in shallow magma chambers and, in combination with availability of low-δ18O glacial meltwaters, increased the proportion of explosive vs effusive eruptions. The presented results provide new constraints on Pliocene–Pleistocene volcanic activity in Kamchatka, and thus constrain an important component of the Pacific Ring of Fire.
Falvard S., Paris R., Belousova M., Belousov A., Giachetti T., Cuven S. Scenario of the 1996 volcanic tsunamis in Karymskoye Lake, Kamchatka, inferred from X-ray tomography of heavy minerals in tsunami deposits // Marine Geology. 2018. № 396. P. 160-170.
Fazlullin S.M., Ushakov S.V., Shuvalov R.A., Aoki M., Nikolaeva A.G., Lupikina E.G. The 1996 subaqueous eruption at Academii Nauk volcano (Kamchatka) and its effects on Karymsky lake // Journal of Volcanology and Geothermal Research. 2000. Vol. 97. № 1–4. P. 181 - 193. doi: 10.1016/S0377-0273(99)00160-2.
   Аннотация
A subaqueous eruption in Karymsky lake in the Academii Nauk caldera dramatically changed its water column structure, water chemistry and biological system in less than 24 h, sending major floodwaves down the discharging river and eruption plumes with ash and gases high into the atmosphere. Prior to the eruption, the lake had a pH of about 7, was dominated by bicarbonate, and well stocked with fish, but turned in early 1996 into a stratified, initially steaming waterbody, dominated by sulfate with high Na and K levels, and devoid of fish. Blockage of the outlet led to rising waterlevels, followed by dam breakage and catastrophic water discharge. The total energy input during the eruption is estimated at about 1016 J. The stable isotope composition of the lake water remained dominated by the meteoric meltwaters after the eruption.
Fedotov S.A. Study and mechanism of the simultaneous 1996 Karymsky volcano and Akademii Nauk caldera eruptions in Kamchatka // Volcanology and Seismology. 1998. Vol. 19. № 5. P. 525-566.
Fedotov S.A., Ozerov A.Yu., Maguskin M.A., Dvigalo V.N., Grib E.N., Ivanov V.V. The 1996-2003 eruptions in the Akademii Nauk Caldera and at the Karymsky volcano, Kamchatka // IUGG-2003 Abstract. 2003. P. A.523
Global Volcanism Program. Volcanoes of the World, v. 4.11.0 (08 Jun 2022). 2013. doi: 10.5479/si.GVP.VOTW4-2013.
   Аннотация
The Volcanoes of the World database is a catalog of Holocene and Pleistocene volcanoes, and eruptions from the past 12,000 years.
Muravyev Y.D., Fedotov S.A., Budnikov V.A., Ozerov A.Yu., Maguskin M.A., Dvigalo V.N., Andreev V.I., Ivanov V.V., Kartasheva L.A., Markov I.A. Activity in the Karymsky Center in 1996: Summit Eruption at Karymsky and Phreatomagmatic Eruption in the Akademii Nauk Caldera // Volcanology and Seismology. 1998. Vol. 19. № 5. P. 567-604.
   Аннотация
Data are presented from studies of volcanoes in the Karymsky long-living volcanic center, Kamchatka in 1996. We examine the dynamics and rock composition for eruptions that started simultaneously on Karymsky Volcano and in the Akademia Nauk caldera. The effusive-explosive eruption of Karymsky Volcano was resumed after a 14-year repose period, producing about 30 million tons of andesite-dacite discharges through the summit vent. Long-continued eruptive activity of that volcano is supposed to go on during the near future. Simultaneously with this activity, typical of Karymsky Volcano, a subaquaceous explosive eruption was observed in the lake that occupies the Akademia Nauk caldera 6 km south of the volcano for the first time in Kamchatka during the historical period. An edifice arose in the northern part of Lake Karymsky during 18 hours of this eruption consisting of basaltic and basaltic andesite pyroclastic material surrounding a crater of diameter 650 m. The amount of erupted pyroclastic material is estimated as 0.04 km3, the total weight being over 70 million tons. A discussion is provided of the impact of these eruptions on the environment; we describe renewed hydrothermal activity and the formation of a new group of hot springs in the Akademia Nauk caldera, and estimate the possibility of breakthrough floods from Lake Karymsky etc.
Siebert L., Simkin T., Kimberly P. Volcanoes of the World. Berkeley: University of California Press. 2010. 568 p.
   Аннотация
This impressive scientific resource presents up-to-date information on ten thousand years of volcanic activity on Earth. In the decade and a half since the previous edition was published new studies have refined assessments of the ages of many volcanoes, and several thousand new eruptions have been documented. This edition updates the book's key components: a directory of volcanoes active during the Holocene; a chronology of eruptions over the past ten thousand years; a gazetteer of volcano names, synonyms, and subsidiary features; an extensive list of references; and an introduction placing these data in context. This edition also includes new photographs, data on the most common rock types forming each volcano, information on population densities near volcanoes, and other features, making it the most comprehensive source available on Earth's dynamic volcanism.
Walter Thomas R. How a tectonic earthquake may wake up volcanoes: Stress transfer during the 1996 earthquake–eruption sequence at the Karymsky Volcanic Group, Kamchatka // Earth and Planetary Science Letters. 2007. Vol. 264. № 3–4. P. 347 - 359. doi: 10.1016/j.epsl.2007.09.006.
   Аннотация
A large tectonic earthquake occurred on Kamchatka peninsular on New Year's Day of 1996 along a SW–NE trending fracture system. Just two days after the earthquake and at a distance of about 10–20 km to the north, a simultaneous eruption of two separate volcanoes followed. These were Karymsky Volcano and Akademia Nauk Volcano, the latter having its first eruption in historical records. In this paper I use numerical models in order to elaborate the static stress transfer between the earthquake and the volcanic system during the sequence that culminated in the January 1996 volcano-tectonic events. The models were designed to consider (i) the geodetically identified pre-eruptive period of doming in order to calculate stress changes at the nearby SW–NE trending fracture zone, and (ii) the January 1996 Mw 7.1 earthquake in order to calculate the dilatation and stress changes at the magma plumbing system. The results suggest that stress changes related to year-long inflation under the volcanic centers increased the Coulomb failure stress at the active faults and thus encouraged the earthquake. The earthquake, in turn, prompted dilatation at the magmatic system together with extensional normal stress at intruding N–S trending dikes. Also, field measurements confirmed the presence of N–S oriented fractures above the dike. Unclamping of the N–S oriented fractures allowed magma to propagate and eventually to trigger the twin-eruption at the volcanoes Karymsky and Akademia Nauk. These findings imply that successful hazard evaluations at volcanoes elsewhere require consideration of the seismo-tectonic framework and large earthquake cycles.