Вулкан Бакенинг. Библиография
Группировать:  
Записей: 31
Страницы:  1 2 3 4
Bergal-Kuvikas Olga, Leonov V., Rogozin A., Bindeman Ilya, Klyupitsky E. New discovered Late Miocene Verkhneavachinsksya caldera on Eastern Kamchatka // 9th Biennial Workshop on Japan-Kamchatka-Alaska Subduction Processes (JKASP-2016). 2016, Fairbanks, Alaska University. 2016.
Braitseva O.A., Ponomareva V.V., Melekestsev I.V., Sulerzhitskiy L.D., Pevzner M.M. Holocene Kamchatka volcanoes. 2002.
Bushenkova N.A., Koulakov I.Yu., Bergal-Kuvikas Olga, Shapiro Nikolay M., Gordeev E.I., Chebrov D.V., Abkadyrov Ilyas, Jakovlev Andrey, Stupina Tatiana, Novgorodova A., Droznina S.Ya., Huang H. Connections between arc volcanoes in Central Kamchatka and the subducting slab inferred from local earthquake seismic tomography // Journal of Volcanology and Geothermal Research. 2023. Vol. 107768. https://doi.org/10.1016/j.jvolgeores.2023.107768.
   Аннотация
The area of Central Kamchatka limited by latitudes of 52.5 and 54 degrees includes six active volcanoes (Avacha, Koryaksky, Zhupanovsky, Mutnovsky, Gorely and Opala), as well as a number of dormant and extinct stratovolcanoes, monogenic cones and large calderas. Furthermore, it contains the Malko-Petropavlovsk fracture zone (MPZ), which marks the boundary between two distinct subduction regimes to the south and to the north. We present a new seismic tomography model for this area, which was constructed based on the joint use of data of the Kamchatkan permanent seismic stations and a temporary network installed in the region in 2019–2020. A series of synthetic tests have demonstrated fair resolution of the derived seismic velocity structures in the crust and in the mantle wedge down to ~150 km. The distributions of the P and S wave velocities, and especially the Vp/Vs ratio, clearly highlight the connection between the volcanic centers in Central Kamchatka and the subducting slab. At depths below 40 km depth, we observe two large low-velocity anomalies centered below Zhupanovsky and Mutnovsky volcanoes and covering all other volcanoes in the area. In the vertical sections, the corresponding anomalies of high Vp/Vs ratio have mushroom shapes with the heads spreading along the bottom of the crust, which probably represent the underplating of magma material that feeds the volcanoes of the groups. The tomography results also reveal some important tectonic features, such as a V-shaped fault system in the Avacha Graben, which is the part of the MPZ.
Dirksen O.V., Melekestsev I.V. Chronology, evolution and morphology of plateau basalt eruptive centers in Avacha River Area, Kamchatka, Russia // Volcanology and Seismology. 1999. Vol. 21. № 1. P. 1-27.
   Аннотация
Nineteen Holocene eruptive centers (cinder cones with lava flows and maars) were located and described in the Avacha horst and anticline zone west of the East Kamchatka volcanic area. A tephrochronological study and the carbon-14 dating of soil and plant remains ranked the eruptive centers into three age groups: 11 000-7700, 3000-2500, and 1200-600 carbon-14 years B. P. The eruptive centers of these groups are believed to have been operating roughly synchronously with the periods of active magma injection in the East Kamchatka volcanic area. Eruptive histories were reconstructed for some of the volcanic centers. The structural and tectonic settings, geographical positions, and elevations of the centers were analyzed. The volume (1.1 km3) and weight (1.8 X 10^9 metric tons) of the erupted rocks were evaluated. The productivity of the plateau basalt volcanism was found to be 10-100 times lower than the plateau basalt productivity in the area of grabens and synclines, possibly, because of the more shallow basement in the horsts and because of the fact that the compression of the crust under uplifting conditions hampered the magma rise toward the surface. Most of the lavas and pyroclastics are basalts of the medium-potassic series, some having medium (54-62) and some elevated (65-70) Kmg values.
Ditmar von Karl Reisen und Aufenthalt in Kamtschatka in den Jahren 1851–1855. Erster Teil. Historischer Bericht nach den Tagebüchern. St. Petersburg: Buchdruckerei der Kaiserlichen Academie der Wissenschaften. 1890. 257 p.
   Аннотация
Der Geologe Karl von Ditmar erkundete von 1851 bis 1855 im Auftrag der russischen Regierung die Bodenschätze Kamčatkas. Dabei erforschte er das Land und seine Bevölkerung aber weit über diesen Autrag hinaus, was seine eindrucksvollen Reisebeschreibungen zeigen. So verbrachte er im Sommer 1853 als erster Forscher längere Zeit bei den Korjaken auf der Halbinsel Tajgonos. Der 1890 erschienene erste Teil seines Werkes enthält den ausführlichen Bericht seiner Reise nach den Tagebüchern, ein getrennt erscheinender zweiter Teil die systematische Darstellung der Natur und der Geschichte Kamčatkas.
Ditmar von Karl Reisen und Aufenthalt in Kamtschatka in den Jahren 1851–1855. Zweiter Teil. Allgemeines über Kamtschatka. St. Petersburg: Buchdruckerei der Kaiserlichen Academie der Wissenschaften. 1900. 273 p.
   Аннотация
Der Geologe Karl von Ditmar erkundete von 1851 bis 1855 im Auftrag der russischen Regierung die Bodenschätze Kamčatkas. Dabei erforschte er das Land und seine Bevölkerung aber weit über diesen Autrag hinaus, was seine eindrucksvollen Reisebeschreibungen zeigen. So verbrachte er im Sommer 1853 als erster Forscher längere Zeit bei den Korjaken auf der Halbinsel Tajgonos. Der 1900 erschienene zweite Teil seines Werkes enthält die systematische Darstellung der Natur und der Geschichte Kamčatkas sowie ein geografisches Lexikon.
Dorendorf F., Churikova T., Koloskov A., Wörner G. Late Pleistocene to Holocene activity at Bakening volcano and surrounding monogenetic centers (Kamchatka): volcanic geology and geochemical evolution // Journal of Volcanology and Geothermal Research. 2000. Vol. 104. № 1–4. P. 131 - 151. doi: 10.1016/S0377-0273(00)00203-1.
   Аннотация
The different roles of variable mantle sources and intra-crustal differentiation processes at Bakening volcano (Kamchatka) and contemporaneous basaltic monogenetic centers are studied using major and trace elements and isotopic data.

Three suites of volcanic activity are recognized: (1) plateau basalts of Lower Pleistocene age; (2) andesites and dacites of the Bakening volcano, the New Bakening volcano dacitic centers nearby; and (3) contemporaneous basaltic cinder cones erupted along subduction zone—parallel N–S faults. Age-data show that the last eruptions in the Bakening area occurred only 600–1200 years ago, suggesting the volcano is potentially active.

Major element variations and petrographic observations provides evidence for a fractionation assemblage of olivine, clinopyroxene, ±plagioclase, ±magnetite (?) within the basaltic suite. The fractionation in the andesites and dacites is dominated by amphibole, clinopyroxene, orthopyroxene and plagioclase plus minor amounts of magnetite and apatite. The youngest cpx-opx-andesites of Bakening main volcano deviate from that trend. Their source was probably formed by mixing of basaltic magmas into the silicic magma chamber of the Bakening volcano. Overall trace element patterns as well as the Sr–Nd–Pb isotopic compositions are quite similar in all rocks despite large differences in their chemical composition (from basalt to rhyodacite). In detail however, the andesite–dacites of the central Bakening volcano show a stronger enrichment in the more incompatible elements and depletion in HREE compared to the monogenetic basaltic centers. This results in a crossing of the REE-pattern for the two suites. The decrease in the HREEs can be explained by amphibole fractionation. A slab component is less likely because it would result in fractionation of the HREE from each other, which is not observed. The higher relative amounts of LILE in the dacitic and the large scatter in the basaltic rocks must be the result of a variable source enrichment by slab-derived fluids overprinting a variable depleted mantle wedge. The plateau basalts are less depleted in HFSE and show a more fractionated HREE pattern. These lavas could either result from a slab component or the addition of an OIB-type enriched mantle in their source.
Global Volcanism Program. Volcanoes of the World, v. 4.11.0 (08 Jun 2022). 2013. doi: 10.5479/si.GVP.VOTW4-2013.
   Аннотация
The Volcanoes of the World database is a catalog of Holocene and Pleistocene volcanoes, and eruptions from the past 12,000 years.
Melekestsev I.V., Dirksen O.V., Girina O.A. A giant landslide-explosion circue and debris avalanche at Bakening volcano, Kamchatka // Volcanology and Seismology. 1999. Vol. 20. № 3. P. 265-279.
   Аннотация
This study revealed that the giant cirque of Bakening Volcano had been produced by its eruption ca. 8000-8500 carbon-14 year ago. The eruption is supposed to have been heralded by a large earthquake (M > 7) resulting in the collapse and slide of the SE sector of the cone. The landslide unroofed the hydrothermal system and triggered an explosion which was followed by an ash-and-block pyroclastic flow. A rockslide avalanche rolled down into the valley of the Srednyaya Avacha River and travelled as far as 10-11 km along it. The avalanche deposited its debris material over an area of 18-20 km2 measuring 0.4-0.5 km3 in volume. These deposits dammed the river, produced two lakes (Bezymyannoe and Verkhneavacha), and gave birth to a large lahar which traveled along the valley much farther.
Ponomareva V.V., Churikova T., Melekestsev I.V., Braitseva O.A., Pevzner M., Sulerzhitskii L. Late Pleistocene-Holocene Volcanism on the Kamchatka Peninsula, Northwest Pacific Region / Volcanism and Subduction: The Kamchatka Region. Washington, D. C.: American Geophysical Union. 2007. Vol. 172. P. 165-198. doi: 10.1029/172GM15.
   Аннотация
Late Pleistocene-Holocene volcanism in Kamchatka results from the subduction of the
Pacific Plate under the peninsula and forms three volcanic belts arranged in en echelon manner
from southeast to northwest. The cross-arc extent of recent volcanism exceeds 250 km and
is one of the widest worldwide. All the belts are dominated by mafic rocks. Eruptives with
SiO2>57% constitute ~25% of the most productive Central Kamchatka Depression belt and
~30% of the Eastern volcanic front, but <10% of the least productive Sredinny Range belt.
All the Kamchatka volcanic rocks exhibit typical arc-type signatures and are represented
by basalt-rhyolite series differing in alkalis. Typical Kamchatka arc basalts display a strong
increase in LILE, LREE and HFSE from the front to the back-arc. La/Yb and Nb/Zr increase
from the arc front to the back arc while B/Li and As, Sb, B, Cl and S concentrations decrease.
The initial mantle source below Kamchatka ranges from N-MORB-like in the volcanic front
and Central Kamchatka Depression to more enriched in the back arc. Rocks from the Central
Kamchatka Depression range in 87Sr/86Sr ratios from 0.70334 to 0.70366, but have almost
constant Nd isotopic ratios (143Nd/144Nd 0.51307–0.51312). This correlates with the highest
U/Th ratios in these rocks and suggest the highest fluid-flux in the source region.
Holocene large eruptions and eruptive histories of individual Holocene volcanoes have been
studied with the help of tephrochronology and 14C dating that permits analysis of time-space
patterns of volcanic activity, evolution of the erupted products, and volcanic hazards.