Вулкан Жупановский. Библиография
Группировать:  
Записей: 99
Страницы:  1 2 3 4 5 6 7 8 9 10
Girina O.A., Manevich A.G., Melnikov D.V., Nuzhdaev A.A., Petrova E.G. The 2016 Eruptions in Kamchatka and on the North Kuril Islands: The Hazard to Aviation // Journal of Volcanology and Seismology. 2019. Vol. 13. № 3. P. 157-171. https://doi.org/10.1134/S0742046319030047.
   Аннотация
Large explosive eruptions of volcanoes pose the highest hazard to modern jet f lights, because such eruptions can eject as much as several cubic kilometers of volcanic ash and aerosol into the atmosphere during a few hours or days. The year 2016 saw eruptions on 5 of the 30 active Kamchatka volcanoes (Sheveluch, Klyuchevskoy, Bezymianny, Karymsky, and Zhupanovsky) and on 3 of the 6 active volcanoes that exist on the North Kuril Islands (Alaid, Ebeko, and Chikurachki). Effusive activity was observed on Sheveluch, Klyuchevskoy, Bezymianny, and Alaid. All volcanoes showed explosive activity. The large explosive events mostly occurred from September through December (Sheveluch), a moderate ash emission accompanied the entire Klyuchevskoy eruption in March–November, and explosive activity of Karymsky, Zhupanovsky, Alaid, and Chikurachki was mostly observed in the earlie r half of the year. The ash ejected in 2016 covered a total area of 600 000 km2, with 460 000 km2 of this being due to Kamchatka volcanoes and 140 000 km2 to the eruptions of the North Kuril volcanoes. The activity of Sheveluch, Klyuchevskoy, and Zhupanovsky was dangerous to international and local f lights, because the explosions sent ash to heights of 10–12 km above sea level, while the eruptions of Bezymianny, Karymsky, Alaid, Ebeko, and Chikurachki were dangerous for local flights, since the ash did not rise higher than 5 km above sea level.
Girina O.A., Melnikov D.V., Manevich A.G., Demyanchuk Yu.V., Nuzhdaev A.A., Petrova E. Kamchatka and North Kurile Volcano Explosive Eruptions in 2015 and Danger to Aviation // Geophysical Research Abstracts Vol. 18, EGU2016-2101, 2016 EGU General Assembly 2016. EGU General Assembly 2016. 2016. https://doi.org/10.13140/RG.2.1.5179.4001.
Girina O.A., Melnikov D.V., Manevich A.G., Nuzhdaev A.A., Demyanchuk Yu.V. Kamchatka Volcano Explosive Eruptions in 2017 and Danger to Aviation // EGU General Assembly 2018. Viena: EGU General Assembly 2018. 2018. № 3805.
Girina O.A., Melnikov D.V., Manevich A.G., Nuzhdaev A.A., Petrova E. The 2017 Activity of Kamchatka Volcanoes and Danger to Aviation // Abstracts. JpGU2018. May 20-24, 2018. Chiba, Japan. Chiba, Japan: JpGU. 2018. № HDS08-P01.
Global Volcanism Program. Volcanoes of the World, v. 4.11.0 (08 Jun 2022). 2013. doi: 10.5479/si.GVP.VOTW4-2013.
   Аннотация
The Volcanoes of the World database is a catalog of Holocene and Pleistocene volcanoes, and eruptions from the past 12,000 years.
Gorbach N.V., Plechova A.A. The lava field in the center of Dzendzur-Zhupanovsky volcanic group, Eastern Kamchatka // Abstract volume of the 8th International Maar Conference, Petropavlovsk-Kamchatsky, Russia, August 24-30, 2020. Petropavlovsk-Kamchatsky: IVS FEB RAS. 2020. P. 58-59.
Gorbach N.V., Plechova A.A., Manevich T.M, Portnyagin M.V., Philosofova T.M, Samoilenko S.B. The Composition of Volcanic Ash and the Dynamics of the 2013–2016 Zhupanovsky Volcano Eruption // Journal of Volcanology and Seismology. 2018. Vol. 12. № 3. P. 155-171. doi: DOI: 10.1134/S0742046318030028.
   Аннотация
This paper presents the results from a study of ash compositions that were erupted in 2013–2016.
The juvenile component has been identified in the ejecta using data on the morphology and textural features of ash particles and the composition of volcanic glasses. The data set suggests that the activity of the volcano was phreatomagmatic.
Gordeev E.I., Girina O.A., Lupyan E.A., Sorokin A.A., Kramareva L.S., Efremov V.Yu., Kashnitskii A.V., Uvarov I.A., Burtsev M.A., Romanova I.M., Mel’nikov D.V., Manevich A.G., Korolev S.P., Verkhoturov A.L. The VolSatView information system for Monitoring the Volcanic Activity in Kamchatka and on the Kuril Islands // Journal of Volcanology and Seismology. 2016. Vol. 10. № 6. P. 382-394. https://doi.org/10.1134/S074204631606004X.
   Аннотация
Kamchatka and the Kuril Islands are home to 36 active volcanoes with yearly explosive eruptions that eject ash to heights of 8 to 15 km above sea level, posing hazards to jet planes. In order to reduce the risk of planes colliding with ash clouds in the north Pacific, the KVERT team affiliated with the Institute of Volcanology and Seismology of the Far East Branch of the Russian Academy of Sciences (IV&S FEB RAS) has conducted daily satellite-based monitoring of Kamchatka volcanoes since 2002. Specialists at the IV&S FEB RAS, Space Research Institute of the Russian Academy of Sciences (SRI RAS), the Computing Center of the Far East Branch of the Russian Academy of Sciences (CC FEB RAS), and the Far East Planeta Center of Space Hydrometeorology Research (FEPC SHR) have developed, introduced into practice, and were continuing to refine the VolSatView information system for Monitoring of Volcanic Activity in Kamchatka and on the Kuril Islands during the 2011–2015 period. This system enables integrated processing of various satellite data, as well as of weather and land-based information for continuous monitoring and investigation of volcanic activity in the Kuril–Kamchatka region. No other information system worldwide offers the abilities that the Vol-SatView has for studies of volcanoes. This paper shows the main abilities of the application of VolSatView for routine monitoring and retrospective analysis of volcanic activity in Kamchatka and on the Kuril Islands.
Gordeev E.I., Girina O.A., Manevich A.G., Melnikov D.V., Nuzhdaev A.A. 2015-2016 Activity of Kamchatkan and Northern Kuriles Volcanoes (Russia) and Danger to Aviation // 9th Biennial Workshop on Japan-Kamchatka-Alaska Subduction Processes (JKASP 2016). Fairbanks, Alaska: UAF. 2016. P. 93-94.
Kochegura V.V., Zubov A.G., Braytseva O.A. Magnetostratigraphy of Kamchatkan Holocene formations of soil and pyroclastics // Volcanology and Seismology. 1990. Vol. 8. № 6. P. 825-849.
   Аннотация
An account is given of magnetostratigraphic studies of Kamchatkan Holocene formations: the cover of soil and pyroclastics and the rocks of the cinder cones from the flank eruptions of Klyuchevskoi Volcano. А study was made of seven sections of the soil and pyroclastics and of samples from 17 cinder cones. А detailed account is given of the data processing procedure. Consideration is given to the reasons for the established incompleteness of the paleomagnetic record in the sections and it is demonstrated that adequately detailed reconstruction of the history of the geomagnetic 1ield is possible only provided that а study is made of а series of рагаllеl sections. The trajесtory of the geomagnetic field vector over the last 4000 years is determined on the basis of the material on radiocarbon datings. Seven cycles of paleosecular variations are distinguished in the age range investigated; each of these cycles has individual features by which they can be recognised and used for stratigraphic correlation. The, features taken were the direction of rotation of the vector, the shape and size of its loops, and the length of the cycles. Correlation of the sections based on paleomagnetic data was found to be in good agreement with the tephrostratigraphic correlation and enabled corrections to be made to the age of some horizons, including the archeological layers of the primitive settlement at Zhupanovo and the cinder cones. The metachronous magnetization present in some tephra layers was found to be an obstacle to any improvement in the accuracy and detail of magnetochronological reconstructions.