Avachinsky Volcano. Bibliography
Group by:  
Records: 187
Pages:  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Girina O.A., Gordeev E.I., Melnikov D.V., Manevich A.G., Nuzhdaev A.A., Romanova I.M. The 25 Anniversary Kamchatkan Volcanic Eruption Response Team // 10th Biennual workshop on Japan-Kamchatka-Alaska subduction processes (JKASP-2018). Petropavlovsk-Kamchatsky, Russia, August 20-26. // 10th Biennual workshop on Japan-Kamchatka-Alaska subduction processes (JKASP-2018). Petropavlovsk-Kamchatsky: IVS FEB RAS. 2018. P. 80-82.
Girina O.A., Loupian E.A., Ozerov A.Yu., Melnikov D.V., Manevich A.G., Petrova E.G. The Activity of Kamchatka Volcanoes and theirs Danger to Human Society (oral report) // JpGU - AGU Joint Meeting 2021: Virtual. 30 May - 06 July, 2021, Japan, Tokyo. 2021. № C001019.    Annotation
There are 30 active volcanoes in the Kamchatka, and several of them are continuously active. In the XX-XXI centuries 17 volcanoes of Kamchatka erupted. During this time, 183 volcanic eruptions occurred, including three catastrophic eruptions (Ksudach, 1907; Bezymianny, 1956; Sheveluch, 1964). Strong explosive eruptions of volcanoes were the most dangerous for human society because they produce in a few hours or days to the atmosphere till 2-3 cubic kilometers of volcanic products. Ash plumes and the clouds, depending on the power of the eruptions, the strength and wind speed, to traveled thousands of kilometers from the volcanoes for several days. Any territory of the Kamchatka Peninsula has repeatedly been exposed to ash falls, the thickness of ash in settlements was from less than 1 mm to 4-5 cm. Strong explosive eruptions of volcanoes Sheveluch, Klyuchevskoy, Bezymianny, Kizimen, Karymsky, Zhupanovsky, Avachinsky, Kambalny were the most dangerous for air travel not only over Kamchatka, but also hundreds of kilometers away from the peninsula.
The strong explosive and effusive eruptions of Sheveluch, Klyuchevskoy, Bezymianny, Kizimen and the other were often accompanied by the formation of hot mud flows (lahars), which sometimes disrupted transport communications (roads, bridges) of nearby settlements.
Scientists of KVERT monitor Kamchatkan volcanoes since 1993. Thanks to satellite monitoring of volcanoes carried out by KVERT, several explosive eruptions were predicted in the XXI century, and early warnings were made to the population about possible ashfalls in settlements and about hazard to aviation.
Girina O.A., Loupian E.A., Sorokin A.A., Romanova I.M., Melnikov D.V., Manevich A.G., Nuzhdaev A.A., Bartalev S.A., Kashnitskii A.V., Uvarov I.A., Korolev S.P., Malkovsky S.I., Kramareva L.S. Information Technologies for the Analyzing of Kamchatka and the Kuril Islands Volcanoes Activity in 2019-2020 // Short Paper Proceedings of the VI International Conference on Information Technologies and High-Performance Computing (ITHPC 2021), Khabarovsk, Russia, September 14-16, 2021. Khabarovsk: CEUR-WS.org. 2021. Vol. 2930. P. 112-118.    Annotation
The work is devoted to the activity analysis of Kamchatka and the Kuril Islands volcanoes in 2019-2020.The activity of the volcanoes was estimated based on the processing of data from daily satellite monitoring carried out using the information system “Remote monitoring of Kamchatkan and the Kuriles volcanoes activity (VolSatView)”. The activity of the Kamchatka and the Kuril Islands volcanoes considered based on the analysis of their thermal anomalies. Analysis of the characteristics of thermal anomalies over volcanoes was carried out in KVERT IS. Analysis of the temperature of thermal anomalies of volcanoes in the Kuril - Kamchatka region in 2019-2020 shows a significantly higher activity of the Kamchatka volcanoes in comparison with the Kuril volcanoes.
Global Volcanism Program. Volcanoes of the World, v. 4.9.1 (17 Sep 2020). 2013. doi: 10.5479/si.GVP.VOTW4-2013.
Guschenko I.I. Volcanoes of the World: Eruption Cycles // Volcanology and Seismology. 1988. Vol. 7. № 3. P. 189-218.
Gusev A.A., Ponomareva V.V., Braitseva O.A., Melekestsev I.V., Sulerzhitsky L.D. Great explosive eruptions on Kamchatka during the last 10,000 years: Self-similar irregularity of the output of volcanic products // Journal of Geophysical Research. 2003. Vol. 108. № B2. doi:10.1029/2001JB000312.    Annotation
Temporal irregularity of the output of volcanic material is studied for the sequence of large (V ≥ 0.5 km3, N = 29) explosive eruptions on Kamchatka during the last 10,000 years. Informally, volcanic productivity looks episodic, and dates of eruptions cluster. To investigate the probable self-similar clustering behavior of eruption times, we determine correlation dimension Dc. For intervals between events 800 and 10,000 years, Dc ≈ 1 (no self-similar clustering). However, for shorter delays, Dc = 0.71, and the significance level for the hypothesis Dc < 1 is 2.5%. For the temporal structure of the output of volcanic products (i.e., for the sequence of variable-weight points), a self-similar “episodic” behavior holds over the entire range of delays 100–10,000 years, with Dc = 0.67 (Dc < 1 at 3.4% significance). This behavior is produced partly by the mentioned common clustering of event dates, and partly by another specific property of the event sequence, that we call “order clustering”. This kind of clustering is a property of a time-ordered list of eruptions, and is manifested as the tendency of the largest eruptions (as opposed to smaller ones) to be close neighbors in this list. Another statistical technique, of “rescaled range” (R/S), confirms these results. Similar but weaker-expressed behavior was also found for two other data sets: historical Kamchatka eruptions and acid layers in Greenland ice column. The episodic multiscaled mode of the output of volcanic material may be a characteristic property of a sequence of eruptions in an island arc, with important consequences for climate forcing by volcanic aerosol, and volcanic hazard.
Holocene Volcanoes in Kamchatka. 2002.
Ionov D.A., Bénard A., Plechov P.Yu., Shcherbakov V.D. Along-arc variations in lithospheric mantle compositions in Kamchatka, Russia: First trace element data on mantle xenoliths from the Klyuchevskoy Group volcanoes // Journal of Volcanology and Geothermal Research. 2013. Vol. 263. P. 122 - 131. doi: 10.1016/j.jvolgeores.2012.12.022.    Annotation
Abstract We provide results of a detailed study of the first peridotite xenoliths of proven mantle origin reported from Bezymyanny volcano in the Klyuchevskoy Group, northern Kamchatka arc. The xenoliths are coarse spinel harzburgites made up mainly of Mg-rich olivine as well as subhedral orthopyroxene (opx) and Cr-rich spinel, and also contain fine-grained interstitial pyroxenes, amphibole and feldspar. The samples are unique in preserving the evidence for both initial arc mantle substrate produced by high-degree melt extraction and subsequent enrichment events. We show that the textures, modal and major oxide compositions of the Bezymyanny xenoliths are generally similar to those of spinel harzburgite xenoliths from Avacha volcano in southern Kamchatka. However, coarse opx from the Bezymyanny harzburgites has higher abundances of light and medium rare earth elements and other highly incompatible elements than coarse opx from the Avacha harzburgites. We infer that (1) the sub-arc lithospheric mantle beneath both Avacha and Bezymyanny (and possibly between these volcanoes) consists predominantly of harzburgitic melting residues, which experienced metasomatism by slab-related fluids or low-fraction, fluid-rich melts and (2) the degrees of metasomatism are higher beneath Bezymyanny. By contrast, xenolith suites from Shiveluch and Kharchinsky volcanoes 50–100 km north of the Klyuchevskoy Group include abundant cumulates and products of reaction of mantle rocks with silicate melts at high melt/rock ratios. The high melt flux through the lithospheric mantle beneath Shiveluch and Kharchinsky may be related to the asthenospheric flow around the northern edge of the sinking Pacific plate; lateral propagation of fluids in the mantle wedge south of the plate edge may contribute to metasomatism in the mantle lithosphere beneath the Klyuchevskoy Group volcanoes.
Ishimaru Satoko, Arai Shoji Highly silicic glasses in peridotite xenoliths from Avacha volcano, Kamchatka arc; implications for melting and metasomatism within the sub-arc mantle // Lithos. 2009. Vol. 107. № 1–2. P. 93 - 106. doi: 10.1016/j.lithos.2008.07.005.    Annotation
Silicate glasses in peridotite xenoliths from Avacha volcano have high SiO2 (up to 72 wt.) and highly SiO2-oversaturated characteristics; normative quartz content is up to 50 wt.. The glasses represent secondary melts solidified after interaction with mantle peridotite, i.e. crystallization of secondary orthopyroxene at the expense of olivine. We identified two kinds of silicate glasses in Avacha peridotites; one is higher in K2O and enriched in Rb, Ba, U, and Pb than the other. The glasses show basically similar chemical characteristics to the host basaltic andesite to andesite of the Avacha volcano. These chemical characteristics are inherited from slab-derived fluids/melts, which metasomatize the mantle wedge and induce partial melting. The differences of chemical features among the Avacha glasses are attributed to chemical difference of the slab-derived fluids/melts, possibly due to the difference of sediments/basalt ratio of the relevant slab. The low-degree partial melt of peridotite assisted by these fluids/melts, is primarily SiO2-oversaturated, and can conduct silicate metasomatism, evolving through interaction with surrounding mantle peridotite, i.e. formation of orthopyroxene at the expense of olivine. Highly silicic glasses, also reported from peridotite xenoliths from oceanic hotspots and continental rift zones, mostly result from assimilation of orthopyroxene by SiO2-undersaturated melts, which crystallize clinopyroxene and olivine. The glasses also show similar trace-element patterns to their host alkali basaltic magmas, as in the case of arc glasses/calc-alkali magmas. If the glasses in peridotite xenoliths are of silicate metasomatism origin, they are similar in chemistry to host magmas. Reaction between carbonatite melts and peridotites shows the same petrographical feature as that of SiO2-undersaturated silicate melts with peridotites. The glasses originated from carbonatite metasomatism, however, exhibit clearly different trace-element patterns from their host alkali basaltic magmas.
Ishimaru Satoko, Arai Shoji, Shukuno Hiroshi Metal-saturated peridotite in the mantle wedge inferred from metal-bearing peridotite xenoliths from Avacha volcano, Kamchatka // Earth and Planetary Science Letters. 2009. Vol. 284. № 3–4. P. 352 - 360. doi: 10.1016/j.epsl.2009.04.042.    Annotation
Lithospheric mantle is inferred to be more oxidized than the asthenosphere, and mantle-wedge peridotites are characterized by high oxidation state relative to abyssal and continental peridotites due to addition of slab-derived fluids or melts. We found metals (native Ni, Fe silicides, native Fe and possible native Ti) from otherwise oxidized sub-arc mantle peridotite xenoliths from Avacha volcano, Kamchatka. This is contrary to the consensus and experimental results that the metals are stable only in deeper parts of the mantle (> 250 km). The metals from Avacha are different in chemistry and petrography from those in serpentinized peridotites. The Avacha metals are characteristically out of chemical equilibrium between individual grains as well as with surrounding peridotite minerals. This indicates their independent formation from different fluids. Some of the Avacha metals form inclusion trails with fluids and pyroxenes, leading to the inference that very local metal saturation resulted from rapid supply (‘flashing’) of reducing fluids from deeper levels. The fluids, possibly rich in H2, are formed by serpentinization at the cold base of the mantle wedge just above the slab, and they reduce overlying peridotites. We propose a metal-saturated peridotite layer, underlying the main oxidized portion, within the mantle wedge beneath the volcanic front to fore-arc region.


Recommended browsers for viewing this site: Google Chrome, Mozilla Firefox, Opera, Yandex. Using another browser may cause incorrect browsing of webpages.
 
Terms of use of IVS FEB RAS Geoportal materials and services

Copyright © Institute of Volcanology and Seismology FEB RAS, 2010-2021. Terms of use.
No part of the Geoportal and/or Geoportal content can be reproduced in any form whether electronically or otherwise without the prior consent of the copyright holder. You must provide a link to the Geoportal geoportal.kscnet.ru from your own website.
 
©Development&Design: roman@kscnet.ru