Вулкан Эбеко. Библиография
Группировать:  
Записей: 105
Страницы:  1 2 3 4 5 6 7 8 9 10 11
Girina O.A., Melnikov D.V., Manevich A.G., Nuzhdaev A.A., Petrova E.G. The 2019 Activity of Kamchatka and Kurile Islands Volcanoes and Danger to Aviation (oral report) // JpGU - AGU Joint Meeting 2020: Virtual. 12-16 July, 2020, Japan, Tokyo. 2020.
Girina O.A., Melnikov D.V., Manevich A.G., Nuzhdaev A.A., Petrova E.G. The 2019 Activity of Kamchatka and Kurile Islands Volcanoes and Danger to Aviation // Japan Geoscience Union Meeting 2020. Japan, Chiba: JpGU. 2020. № HDS10-P01.
Global Volcanism Program. Volcanoes of the World, v. 4.11.0 (08 Jun 2022). 2013. doi: 10.5479/si.GVP.VOTW4-2013.
   Аннотация
The Volcanoes of the World database is a catalog of Holocene and Pleistocene volcanoes, and eruptions from the past 12,000 years.
Gorshkov G.S. Kurile Islands / Catalog of Active Volcanoes of the World and Solfatara Fields. Rome: IAVCEI, 7. 1958. P. 1-99.
Gorshkov G.S. Volcanism and the Upper Mantle: Investigations in the Kurile Island Arc. New York-London: Plenum Press. 1970. 385 p. doi: 10.1007/978-1-4684-1767-8.
   Аннотация
The present volume seems to me to be a particularly im­ portant one for several reasons. Not least among these is the fact that it summarizes the work of two decades by G. S. Gorshkov, one of the world's leading volcanologists. In addition, it is the first general work of this length on the volcanism of what might be called a "narrow" island arc, a relatively simple megastructure as com­ pared with the "wide" arcs such as Japan and Indonesia. Finally, in this volume Gorshkov has summarized and cited extensive evi­ dence for his general ideas on the relation between volcanism and the earth's crust and mantle. A few potentially troublesome items should be noted here. In the translation the Russian terms "suite" and "series" have been retained, though for American readers these might better have been translated as "formation" and "group. " In almost all cases Russian place names have simply been transliterated rather than translated (e. g. , "Yuzhnyi Isthmus" rather than "South Isthmus"); in a few cases the English equivalent has been given in brackets where this is essential to the understanding of the author's com­ ments. The adjectives have retained their Russian case endings in the process (masculine -yi or -ii, feminine -aya or -'ya, neuter -oe) and this may occasionally lead to some slight confusion, for example, when the author calls a given feature Severnyi Volcano at one point and Severnaya Mountain at another.
Kalacheva Elena, Taran Yuri, Kotenko Tatiana, Hattori Keiko, Kotenko Leonid, Solis-Pichardo Gabriela Volcano–hydrothermal system of Ebeko volcano, Paramushir, Kuril Islands: Geochemistry and solute fluxes of magmatic chlorine and sulfur // Journal of Volcanology and Geothermal Research. 2016. Vol. 310. P. 118-131. doi:10.1016/j.jvolgeores.2015.11.006.
   Аннотация
Ebeko volcano at the northern part of Paramushir Island in the Kuril island arc produces frequent phreatic eruptions and relatively strong fumarolic activity at the summit area ~ 1000 m above sea level (asl). The fumaroles are characterized by low-temperature, HCl- and S-rich gas and numerous hyper-acid pools (pH < 1) without drains. At ~ 550 m asl, in the Yurieva stream canyon, many hot (up to 87 °C) springs discharge ultra-acidic (pH 1–2) SO4–Cl water into the stream and finally into the Sea of Okhotsk. During quiescent stages of degassing, these fumaroles emit 1000–2000 t/d of water vapor, < 20 t/d of SO2 and < 5 t/d of HCl. The measurement of acidic hot Yurieva springs shows that the flux of Cl and S, 60–80 t/d each, is independent on the volcanic activity in the last two decades. Such high flux of Cl is among the highest ever measured in a volcano–hydrothermal system. Oxygen and hydrogen isotopic composition of water and Cl concentration for Yurieva springs show an excellent positive correlation, indicating a mixing between meteoric water and magmatic vapor. In contrast, volcanic gas condensates of Ebeko fumaroles do not show a simple mixing trend but rather a complicated data suggesting evaporation of the acidic brine. Temperatures calculated from gas compositions and isotope data are similar, ranging from 150 to 250 °C, which is consistent with the presence of a liquid aquifer below the Ebeko fumarolic fields. Saturation indices of non-silicate minerals suggest temperatures ranging from 150 to 200 °C for Yurieva springs. Trace elements (including REE) and Sr isotope composition suggest congruent dissolution of the Ebeko volcanic rocks by acidic waters. Waters of Yurieva springs and waters of the summit thermal fields (including volcanic gas condensates) are different in Cl/SO4 ratios and isotopic compositions, suggesting complicated boiling–condensation–mixing processes.
Khubaeva Olga, Bergal-Kuvikas Olga, Sidorov M.D. Identification of Ruptures and their Interaction with Hydrothermal–Magmatic Systems on Northern Paramushir Isl. (Kuril Islands, Russia): 3D Modeling of Tectonic Fragmentation // Geotecton. 2020. № 54. P. 785-796. doi: 10.1134/S0016852120060072.
Khubaeva Olga, Bergal-Kuvikas Olga, Sidorov M.D. The Formation and Recharge of the Verkhne-Yuriev Thermal Springs, Paramushir Island, Kuril Islands // Journal of Volcanology and Seismology. 2022. Vol. 3. P. 43-59. doi: 10.1134/S0742046322030034.
Kirianov V.Yu. Assessment of Kamchatkan Ash Hazard to Airlines // Volcanology and Seismology. 1993. Vol. 14. № 3. P. 246-269.
Melekestsev I.V., Dvigalo V.N., Kirianov V.Yu., Kurbatov A.V., Nesmachnyi I.A. Ebeko volcano, Kuril Islands: eruptive history and potential volcanic hazards. Part I // Volcanology and Seismology. 1994. Vol. 15. № 3. P. 339-354.
   Аннотация
The eruptive history of Ebeko Volcano is described since its origin about 2400 years ago until the beginning of the 17th century. Six stages of increased activity each lasting 200-300 years were separated by repose periods of the same duration. The eruption of juvenile material (lava and pyroclastics) took place at the first stage only (420-200 B.C.). All eruptions that followed were phreatic events of varying vigor. It is shown that, except for the first eruptive stage, the main volcanic hazard for the Ebeko area and the town of Severo-Kurilsk near by comes from large lahars and tephra fallout. -from Journal summary