Вулкан Карымский. Библиография
Группировать:  
Записей: 251
Страницы:  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
McGimsey R.G., Neal C.A., Girina O.A. 1999 Volcanic Activity in Alaska and Kamchatka: Summary of Events and Response of The Alaska Volcano Observatory Open-File Report 2004-1033. 2004. 45 p.
McGimsey R.G., Neal C.A., Girina O.A. 2001 Volcanic Activity in Alaska and Kamchatka: Summary of Events and Response of the Alaska Volcano Observatory Open-File Report 2004-1453. 2004. 53 p.
McGimsey R.G., Neal C.A., Girina O.A. 2003 Volcanic Activity in Alaska and Kamchatka: Summary of Events and Response of the Alaska Volcano Observatory Open-File Report 2005-1310. 2005. 58 p.
Melnikov D.V., Ushakov S.V., Galle B. Estimation of the sulfur dioxide emission by Kamchatka volcanoes using differential optical absorption spectroscopy // 8-th Biennial Workshop on Japan-Kamchatka-Alaska Subduction Processes, JKASP 2014. 22-26 September, 2014, Sapporo, Japan. 2014.
   Аннотация
During the 2012-2013 we have measured SO2 on Kamchatka volcanoes (Gorely, Mutnovsky, Kizimen, Tolbachik, Karymsky, Avachinsky) using DOAS (differential optical absorption spectroscopy). Mobile-DOAS, on a base of USB2000+, has been used as an instrument. The goal of this work was to estimate SO2 emission by Kamchatka volcanoes with the different types of activity. Mutnovsky and Avachinsky during the measurements period passively degassed with SO2 emission ~ 480 t/d and 210 t/d, respectively. Gorely volcano was very active, with intensive vapor-gas activity with gas discharge rate 800-1200 t/d. During the measurements at Karymsky volcano there were relatively weak explosive events (ash plum rose up to 0.5 km above the crater) with 5-10 minutes periodicity. For this time, SO2 discharge rate was ~350-400 t/d. Due to the remoteness and difficulties for accessibility of Kizimen volcano, the measurements were done only once – on October 15th, 2012. 5 traverses have been done above the gas plume. SO2 emission was ~ 700 t/d. On Tolbachik fissure eruption we have measured SO2 emission repeatedly from January until August 2013. The intensive effusion of the lava flows (basaltic andesite by composition) and frequent explosions in the crater of the cinder cone were characteristic features of this eruption. The measured gas emission was from ~1500-2200 t/d in January until 600-800 t/d in August 2013. All measurements were made not permanently, but to the extent possible. Therefore, it is difficult to make detailed conclusions on the SO2 emission on these volcanoes. Nevertheless, this research may become a starting point for the development of the system of the constant monitoring of volcanic gases emission by the active volcanoes of Kamchatka.

Estimation of the sulfur dioxide emission by Kamchatka volcanoes using differential optical absorption spectroscopy.
Muravyev Y.D., Fedotov S.A., Budnikov V.A., Ozerov A.Yu., Maguskin M.A., Dvigalo V.N., Andreev V.I., Ivanov V.V., Kartasheva L.A., Markov I.A. Activity in the Karymsky Center in 1996: Summit Eruption at Karymsky and Phreatomagmatic Eruption in the Akademii Nauk Caldera // Volcanology and Seismology. 1998. Vol. 19. № 5. P. 567-604.
   Аннотация
Data are presented from studies of volcanoes in the Karymsky long-living volcanic center, Kamchatka in 1996. We examine the dynamics and rock composition for eruptions that started simultaneously on Karymsky Volcano and in the Akademia Nauk caldera. The effusive-explosive eruption of Karymsky Volcano was resumed after a 14-year repose period, producing about 30 million tons of andesite-dacite discharges through the summit vent. Long-continued eruptive activity of that volcano is supposed to go on during the near future. Simultaneously with this activity, typical of Karymsky Volcano, a subaquaceous explosive eruption was observed in the lake that occupies the Akademia Nauk caldera 6 km south of the volcano for the first time in Kamchatka during the historical period. An edifice arose in the northern part of Lake Karymsky during 18 hours of this eruption consisting of basaltic and basaltic andesite pyroclastic material surrounding a crater of diameter 650 m. The amount of erupted pyroclastic material is estimated as 0.04 km3, the total weight being over 70 million tons. A discussion is provided of the impact of these eruptions on the environment; we describe renewed hydrothermal activity and the formation of a new group of hot springs in the Akademia Nauk caldera, and estimate the possibility of breakthrough floods from Lake Karymsky etc.
National Report for the International Association of Volcanology and Chemistry of the Earth’s Interior of the International Union of Geodesy and Geophysics 2011–2014. Presented to the XXVI General Assembly of the IUGG Geoinf. Res. Papers, 3, BS3011. / Ed. Churikova T.G., Gordeychik B.N., Fedotov S.A. Moscow: GCRAS Publ. 2015. 185 p. doi: 10.2205/2015IUGG-RU-IAVCEI.
   Аннотация
In the present National Report, major results are given of research conducted by Russian scientists in 2011–2014 on the topics of the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) of the International Union of Geodesy and Geophysics. Kamchatka Peninsula with its famous Klyuchevskaya Group of volcanoes is the most volcanically active area in Russia and one of the most active in the world. Majority of researches and scientific results on Volcanology and Geochemistry of the Earth’s Interior during 2011–2014 were achieved in this region including recent data on new Tolbachik fissure eruption in 2012–2013. Besides it, the scientific results on the magmatism outside Russia, which were achieved by Russian scientists, are also included in this review. Major achievements in the chemistry of the Earth, geothermy, geodynamics, geochronology and deep mantle structure are featured. The studies as for the single volcanoes as well the regional observations are outlined. The theoretical and applied efforts connected to the volcanological processes are considered. The main conclusions are illustrated by summarized figures. All the required references are given.
Neal C.A., Herrick J.A., Girina O.A., Chibisova M.V., Rybin A.V., McGimsey R.G., Dixon J. 2010 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: Summary of events and response of the Alaska Volcano Observatory. 2014. 76 p.
   Аннотация
The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest or suspected unrest at 12 volcanic centers in Alaska during 2010. The most notable volcanic activity consisted of intermittent ash emissions from long-active Cleveland volcano in the Aleutian Islands. AVO staff also participated in hazard communication regarding eruptions or unrest at seven volcanoes in Russia as part of an ongoing collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.
Neal C.A., McGimsey R.G., Girina O.A. 2002 Volcanic Activity in Alaska and Kamchatka: Summary of Events and Response of the Alaska Volcano Observatory Open-File Report 2004-1058. 2004. 55 p.
Ozerov A., Ispolatov I., Lees J. Modeling Strombolian eruptions of Karymsky volcano, Kamchatka, Russia // Journal of Volcanology and Geothermal Research. 2003. Vol. 122. № 3–4. P. 265 - 280. doi: 10.1016/S0377-0273(02)00506-1.
   Аннотация
A model is proposed to explain temporal patterns of activity in a class of periodically exploding Strombolian-type andesite volcanoes. These patterns include major events (explosions) which occur every 3–30 min and subsequent tremor with a typical period of 1 s. This two-periodic activity is thought to be caused by two distinct mechanisms of accumulation of the elastic energy in the moving magma column: compressibility of the magma in the conduit and viscoelastic response of the almost solid magma plug on the top. A release of the elastic energy occurs during a stick–slip dynamic phase transition in a boundary layer along the walls of the conduit; this phase transition is driven by the shear stress accumulated in the boundary layer. The intrinsic hysteresis of this first-order phase transition explains the long periods of inactivity in the explosion cycle. Temporal characteristics of the model are found to be qualitatively similar to the acoustic and seismic signals recorded at Karymsky volcano in Kamchatka.
Ozerov A., Lees J., Ispolatov J. Long and Short Term Periodic Activity at Karymsky Volcano // AGU Spring Meeting 1999. Eos Trans. AGU, xx (xx), Spring Meet. Suppl., Abstract. Boston, Massachusetts: AGU. 1999. P. V11D-09.