Вулкан Шивелуч. Библиография
Группировать:  
Записей: 366
Страницы:  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
Ponomareva Vera, Portnyagin Maxim, Pevzner Maria, Blaauw Maarten, Kyle Philip, Derkachev Alexander Tephra from andesitic Shiveluch volcano, Kamchatka, NW Pacific: chronology of explosive eruptions and geochemical fingerprinting of volcanic glass // International Journal of Earth Sciences. 2015. Vol. 104. № 5. P. 1459-1482. doi:10.1007/s00531-015-1156-4.
   Аннотация
The ~16-ka-long record of explosive eruptions from Shiveluch volcano (Kamchatka, NW Pacific) is refined using geochemical fingerprinting of tephra and radiocarbon ages. Volcanic glass from 77 prominent Holocene tephras and four Late Glacial tephra packages was analyzed by electron microprobe. Eruption ages were estimated using 113 radiocarbon dates for proximal tephra sequence. These radiocarbon dates were combined with 76 dates for regional Kamchatka marker tephra layers into a single Bayesian framework taking into account the stratigraphic ordering within and between the sites. As a result, we report ~1,700 high-quality glass analyses from Late Glacial–Holocene Shiveluch eruptions of known ages. These define the magmatic evolution of the volcano and provide a reference for correlations with distal fall deposits. Shiveluch tephras represent two major types of magmas, which have been feeding the volcano during the Late Glacial–Holocene time: Baidarny basaltic andesites and Young Shiveluch andesites. Baidarny tephras erupted mostly during the Late Glacial time (~16–12.8 ka BP) but persisted into the Holocene as subordinate admixture to the prevailing Young Shiveluch andesitic tephras (~12.7 ka BP–present). Baidarny basaltic andesite tephras have trachyandesite and trachydacite (SiO2 < 71.5 wt%) glasses. The Young Shiveluch andesite tephras have rhyolitic glasses (SiO2 > 71.5 wt%). Strongly calc-alkaline medium-K characteristics of Shiveluch volcanic glasses along with moderate Cl, CaO and low P2O5 contents permit reliable discrimination of Shiveluch tephras from the majority of other large Holocene tephras of Kamchatka. The Young Shiveluch glasses exhibit wave-like variations in SiO2 contents through time that may reflect alternating periods of high and low frequency/volume of magma supply to deep magma reservoirs beneath the volcano. The compositional variability of Shiveluch glass allows geochemical fingerprinting of individual Shiveluch tephra layers which along with age estimates facilitates their use as a dating tool in paleovolcanological, paleoseismological, paleoenvironmental and archeological studies. Electronic tables accompanying this work offer a tool for statistical correlation of unknown tephras with proximal Shiveluch units taking into account sectors of actual tephra dispersal, eruption size and expected age. Several examples illustrate the effectiveness of the new database. The data are used to assign a few previously enigmatic wide-spread tephras to particular Shiveluch eruptions. Our finding of Shiveluch tephras in sediment cores in the Bering Sea at a distance of ~600 km from the source permits re-assessment of the maximum dispersal distances for Shiveluch tephras and provides links between terrestrial and marine paleoenvironmental records.
Portnyagin Maxim, Hoernle Kaj, Plechov Pavel, Mironov Nikita, Khubunaya Sergey Constraints on mantle melting and composition and nature of slab components in volcanic arcs from volatiles (H2O, S, Cl, F) and trace elements in melt inclusions from the Kamchatka Arc // Earth and Planetary Science Letters. 2007. Т. 255. № 1-2. С. 53-69. doi:10.1016/j.epsl.2006.12.005.
Rulenko O.P. Volcanic Cloud Electrification // Volcanology and Seismology. 1988. Vol. 7. № 2. P. 253-272.
Siebert L., Simkin T., Kimberly P. Volcanoes of the World. Berkeley: University of California Press. 2010. 568 p.
   Аннотация
This impressive scientific resource presents up-to-date information on ten thousand years of volcanic activity on Earth. In the decade and a half since the previous edition was published new studies have refined assessments of the ages of many volcanoes, and several thousand new eruptions have been documented. This edition updates the book's key components: a directory of volcanoes active during the Holocene; a chronology of eruptions over the past ten thousand years; a gazetteer of volcano names, synonyms, and subsidiary features; an extensive list of references; and an introduction placing these data in context. This edition also includes new photographs, data on the most common rock types forming each volcano, information on population densities near volcanoes, and other features, making it the most comprehensive source available on Earth's dynamic volcanism.
Slezin Yu.B. The Bezymyannyi, Shiveluch, and St. Helens volcanoes: A comparative revision of their catastrophic eruptions during the 20th century // Journal of Volcanology and Seismology. 2015. Vol. 9. № 5. P. 289-294. doi:10.1134/S0742046315050073.
Steinberg G.S., Lorenz V. External ballistic of volcanic explosions // Bulletin Volcanologique. 1983. Vol. 46. Vol. 4. P. 333-348. 16 p. doi:10.1007/BF02597769.
VONA/KVERT Information Releases. 2005.
Volcano observatory notification to aviation (VONA/KVERT). 2011.
Volynets O.N., Ponomareva V.V., Babansky A.D. Magnesian Basalts of Shiveluch Andesite Volcano, Kamchatka // Petrology. 1997. Vol. 5. № 2. P. 206-221.
   Аннотация
The eruptive history of the Shiveluch andesite volcano included two Holocene events, during which
the volcano erupted unusual rocks: medium-potassium, amphibole-bearing magnesian basalts (7600 years ago)
and high-potassium magnesian basalts with phlogopite and amphibole (3600 years ago). The volumes of tephra
were approximately 0.1 and 0.3 km3, respectively. Some of the mineralogical and geochemical features of the
Holocene basalts were inherited by the subsequent basaltic andesites and andesites. These are similar in Mg
variation ranges of olivine, clinopyroxene, and amphibole phenocrysts, high Mg contents, and high Cr and Ni
concentrations. This and the results of mass-balance calculations do not contradict the view that the Shiveluch
volcanic rocks originated during the crystal fractionation of Holocene basalt melts. However, the other
geochemical features of the Shiveluch rocks, e.g., their similar REE contents, cast doubt on the formation of
the magnesian basaltic andesites through fractional crystallization of magnesian basalt magma and suggest that
they originated as a result of interaction between magnesian basalt magma and a depleted mantle material at a
shallow depth. At the same time, the different mineral compositions of the Holocene medium- and high-potassium
basalts and the results of mass-balance calculations indicate that their parental magmas might be produced
by the melting of different rocks.
Walter Thomas R., Zorn E.U, Harnett C.E., Shevchenko A.V., Belousov A., Belousova M., Vassileva M.S. Influence of conduit and topography complexity on spine extrusion at Shiveluch volcano, Kamchatka // Communications Earth & Environment. 2022. Vol. 3. № 169. P. 1-10. https://doi.org/10.1038/s43247-022-00491-w.