Главная БиблиографияПо авторам
 
 Библиография
Вулкан: Расширенный поиск

Выбрать:   |   Все   |   A   |   B   |   C   |   D   |   E   |   F   |   G   |   H   |   I   |   J   |   K   |   L   |   M   |   N   |   O   |   P   |   R   |   S   |   T   |   V   |   W   |   Y   |   Z   |   А   |   Б   |   В   |   Г   |   Д   |   Е   |   Ж   |   З   |   И   |   К   |   Л   |   М   |   Н   |   О   |   П   |   Р   |   С   |   Т   |   У   |   Ф   |   Х   |   Ц   |   Ч   |   Ш   |   Э   |   Я   |    Количество записей: 10
Страницы:  1
 C
Carter A.J., Girina O.A., Ramsey M.S., Demyanchuk Yu.V. ASTER and field observations of the 24 December 2006 eruption of Bezymianny Volcano, Russia // Remote Sensing of Environment. 2008. V. 112. P. 2569-2577.    Аннотация
An explosive eruption occurred at Bezymianny Volcano (Kamchatka Peninsula, Russia) on 24 December 2006 at 09:17 (UTC). Seismicity
increased three weeks prior to the large eruption, which produced a 12–15 km above sea level (ASL) ash column. We present field observations from 27 December 2006 and 2 March 2007, combined with satellite data collected from 8 October 2006 to 11 April 2007 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), as part of the instrument's rapid-response program to volcanic eruptions. Pixel-integrated brightness temperatures were calculated from both ASTER 90 m/pixel thermal infrared (TIR) data as well as 30 m/pixel shortwave infrared (SWIR) data. Four days prior to the eruption, the maximum TIR temperature was 45 °C above the average background temperature (−33 °C) at the dome, which we interpret was a precursory signal, and had dropped to 8 °C above background by 18 March 2007. On 20 December 2006, there was also a clear thermal signal in the SWIR data of 128 °C using ASTER Band 7 (2.26 μm). The maximum SWIR temperature was 181 °C on the lava dome on 4 January 2007, decreasing below the detection limit of the SWIR data by 11 April 2007. On 4 January 2007 a hot linear feature was observed at the dome in the SWIR data, which produced a maximum temperature of 700 °C for the hot fraction of the pixel using the dual band technique. This suggests that magmatic temperatures were present at the dome at this time, consistent with the emplacement of a new lava lobe following the eruption. The eruption also produced a large, 6.5 km long by up to 425 m wide pyroclastic flow (PF) deposit that was channelled into a valley to the south–southeast. The PF deposit cooled over the following three months but remained elevated above the average background temperature. A second field investigation in March 2007 revealed a still-warm PF deposit that contained fumaroles. It was also observed that the upper dome morphology had changed in the past year, with a new lava lobe having in-filled the crater that formed following the 9 May 2006 eruption. These data provide further information on effusive and explosive activity at Bezymianny using quantitative remote sensing data and reinforced by field observations to assist in pre-eruption detection as well as post-eruption monitoring.
Carter Adam J., Ramsey Michael S., Belousov Alexander B. Detection of a new summit crater on Bezymianny Volcano lava dome: satellite and field-based thermal data // Bulletin of Volcanology. 2007. V. 69. № 7. P. 811-815. doi:10.1007/s00445-007-0113-x.
Caudron Corentin, Taisne Benoit, Kugaenko Yulia, Saltykov Vadim Magma migration at the onset of the 2012–13 Tolbachik eruption revealed by Seismic Amplitude Ratio Analysis // Journal of Volcanology and Geothermal Research. 2015. V. 307. P. 60 - 67. doi: 10.1016/j.jvolgeores.2015.09.010.    Аннотация
Abstract In contrast of the 1975–76 Tolbachik eruption, the 2012–13 Tolbachik eruption was not preceded by any striking change in seismic activity. By processing the Klyuchevskoy volcano group seismic data with the Seismic Amplitude Ratio Analysis (SARA) method, we gain insights into the dynamics of magma movement prior to this important eruption. A clear seismic migration within the seismic swarm, started 20 hours before the reported eruption onset (05:15 UTC, 26 November 2012). This migration proceeded in different phases and ended when eruptive tremor, corresponding to lava flows, was recorded (at ~ 11:00 UTC, 27 November 2012). In order to get a first order approximation of the magma location, we compare the calculated seismic intensity ratios with the theoretical ones. As expected, the observations suggest that the seismicity migrated toward the eruption location. However, we explain the pre-eruptive observed ratios by a vertical migration under the northern slope of Plosky Tolbachik volcano followed by a lateral migration toward the eruptive vents. Another migration is also captured by this technique and coincides with a seismic swarm that started 16–20 km to the south of Plosky Tolbachik at 20:31 {UTC} on November 28 and lasted for more than 2 days. This seismic swarm is very similar to the seismicity preceding the 1975–76 Tolbachik eruption and can be considered as a possible aborted eruption.
Chaplygin Ilya, Yudovskaya Marina, Vergasova Lidiya, Mokhov Andrey Native gold from volcanic gases at Tolbachik 1975–76 and 2012–13 Fissure Eruptions, Kamchatka // Journal of Volcanology and Geothermal Research. 2015. V. 307. P. 200 - 209. doi: 10.1016/j.jvolgeores.2015.08.018.    Аннотация
Abstract Aggregates and euhedral crystals of native gold were found in sublimates formed during New Tolbachik Fissure Eruption in 2012–2013 (NTFE). Gold-bearing sublimate samples were taken from a red-hot (690 °C) degassing fracture in the roof of an active lava tunnel 1.5 km from active Naboko cinder cone in May 2013. The gas condensate collected at 690 °C in this site contains 16 ppb Au, 190 ppb Ag and 1180 ppm Cu compared to 3 ppb Au, 39 ppb Ag and 9.7 ppm Cu in the condensate of pristine magmatic gas sampled at 1030 °C. The 690 °C volcanic gas is most likely a mix of magmatic gas and local snow buried under the lava flows as indicated by oxygen and hydrogen isotope compositions of the condensate. The lower-temperature gas enrichment in gold, copper and chlorine is resulted from evaporation of the 690 °C condensate during forced gas pumping at sampling. Native gold was also found in fumarolic encrustations collected from caverns in basalt lava flows with temperature up to 600 °C in June 2014, in a year after eruption finished. The native gold precipitation in newly formed Cu-rich sublimates together with the well known gold occurrences in cinder cones of 1975–1976 Large Tolbachik Fissure Eruption manifest a transport capability of oxidized volcanic gas.
Churikova T., Gordeychik B., Wörner G., Ivanov B., Maximov A. Mineralogy and petrology of Kamen volcano rocks, Kamchatka // Mitigating natural hazards in active arc environments. Linkages among tectonism, earthquakes, magma genesis and eruption in volcanic arcs, with a special focus on hazards posed by arc volcanism and great earthquakes. June 22-26, 2009, Fairbanks, Alaska. Fairbanks, Alaska: Geophysical Institute, University of Alaska. 2009. P. 117-118.
Churikova T.G., Gordeychik B.N., Edwards B.R., Ponomareva V.V., Zelenin E.A. The Tolbachik volcanic massif: A review of the petrology, volcanology and eruption history prior to the 2012–2013 eruption // Journal of Volcanology and Geothermal Research. 2015. V. 307. P. 3 - 21. doi: 10.1016/j.jvolgeores.2015.10.016.    Аннотация
Abstract The primary goal of this paper is to summarize all of the published data on the Tolbachik volcanic massif in order to provide a clear framework for the geochronologic, petrologic, geochemical and to a lesser extent the geophysical and tectonic characteristics of the Tolbachik system established prior to the 2012–2013 eruption. The Tolbachik massif forms the southwestern part of the voluminous Klyuchevskoy volcanic group in Kamchatka. The massif includes two large stratovolcanoes, Ostry (“Sharp”) Tolbachik and Plosky (“Flat”) Tolbachik, and a 70 km long zone of the basaltic monogenetic cones that form an arcuate rift-like structure running across the Plosky Tolbachik summit. The Tolbachik massif gained international attention after the 1975–1976 Great Tolbachik Fissure Eruption (GTFE), which was one of the largest eruptions of the 20th century and one of the six largest basaltic fissure eruptions in historical time. By the end of the GTFE, 2.2 km3 of volcanic products of variable basaltic compositions with MORB-like isotopic characteristics covered an area of > 1000 km2. During the following three decades more than 700 papers on various aspects of this eruption have been published both in national and international journals. Although the recent 2012–2013 eruption, which is the main topic of this volume, was not as long as the {GTFE} in duration or as large in area and volume of the erupted deposits, it brought to the surface a unique volcanic material never found before. In order to understand the data from new eruptions and make significant progress towards a better understanding of the Tolbachik magmatic system it is important to be able to put the new results into the historic context of previous research.
Churikova T.G., Ivanov B.V., Eichelberger J., Wörner G., Browne B., Izbekov P. Major and trace element zoning in plagioclase from Kizimen Volcano (Kamchatka): Insights into magma-chamber processes // Journal of Volcanology and Seismology. 2013. V. 7. № 2. P. 112-130. doi:10.1134/S0742046313020024.    Аннотация
The data on the geochemistry of the rocks of Kizimen Volcano and results of microprobe studies of major and trace elements in plagioclase grains from acid lavas and basalt inclusions are presented. The characteristics of the Kizimen Volcano are the following: (1) basalt inclusions are abundant in acid lavas; (2) banded, mixed lavas occur; (3) the distribution curves of rare earth elements of acidic lavas and basalt inclusions intersect; (4) Sr–Nd isotope systematics of the rocks and inclusions do not indicate mixture with crustal material; (5) plagioclase phenocrysts are of direct and reverse zonation; (6) olivine and hornblende, as well as acid and mafic plagioclases, coexist in the rocks. The studies revealed that the rocks are of a hybrid nature and originated in the course of repeated mixture of acid and mafic melts either with chemical and ther mal interaction of melts or exclusively thermal ones. Study of the major and trace element distribution in zonal minerals provides an informative tool for understanding the history of the generation and evolution of melts in a magma chamber
Churikova Tatiana G., Gordeychik Boris N., Ivanov Boris V., Wörner Gerhard Relationship between Kamen Volcano and the Klyuchevskaya group of volcanoes (Kamchatka) // Journal of Volcanology and Geothermal Research. 2013. V. 263. P. 3 - 21. doi: 10.1016/j.jvolgeores.2013.01.019.    Аннотация
Abstract Data on the geology, petrography, mineralogy, and geochemistry of rocks from Kamen Volcano (Central Kamchatka Depression) are presented and compared with rocks from the neighbouring active volcanoes. The rocks from Kamen and Ploskie Sopky volcanoes differ systematically in major elemental and mineral compositions and could not have been produced from the same primary melts. The compositional trends of Kamen stratovolcano lavas and dikes are clearly distinct from those of Klyuchevskoy lavas in all major and trace element diagrams as well as in mineral composition. However, lavas of the monogenetic cones on the southwestern slope of Kamen Volcano are similar to the moderately high-Mg basalts from Klyuchevskoy and may have been derived from the same primary melts. This means that the monogenetic cones of Kamen Volcano represent the feeding magma for Klyuchevskoy Volcano. Rocks from Kamen stratovolcano and Bezymianny form a common trend on all major element diagrams, indicating their genetic proximity. This suggests that Bezymianny Volcano inherited the feeding magma system of extinct Kamen Volcano. The observed geochemical diversity of rocks from the Klyuchevskaya group of volcanoes can be explained as the result of both gradual depletion over time of the mantle N-MORB-type source due to the intense previous magmatic events in this area, and the addition of distinct fluids to this mantle source.
Churikova Tatiana G., Gordeychik Boris N., Iwamori Hikaru, Nakamura Hitomi, Ishizuka Osamu, Nishizawa Tatsuji, Haraguchi Satoru, Miyazaki Takashi, Vaglarov Bogdan S. Petrological and geochemical evolution of the Tolbachik volcanic massif, Kamchatka, Russia // Journal of Volcanology and Geothermal Research. 2015. V. 307. P. 156 - 181. doi: 10.1016/j.jvolgeores.2015.10.026.    Аннотация
Abstract Data on the geology, petrography, and geochemistry of Middle–Late-Pleistocene rocks from the Tolbachik volcanic massif (Kamchatka, Klyuchevskaya group of volcanoes) are presented and compared with rocks from the neighboring Mount Povorotnaya, Klyuchevskaya group basement, and Holocene–historical Tolbachik monogenetic cones. Two volcanic series of lavas, middle-K and high-K, are found in the Tolbachik massif. The results of our data analysis and computer modeling of crystallization at different P–T–H2O–fO2 conditions allow us to reconstruct the geochemical history of the massif. The Tolbachik volcanic massif started to form earlier than 86 ka based on K–Ar dating. During the formation of the pedestal and the lower parts of the stratovolcanoes, the middle-K melts, depleted relative to NMORB, fractionated in water-rich conditions (about 3 of H2O). At the Late Pleistocene–Holocene boundary, a large fissure zone was initiated and the geodynamical regime changed. Upwelling associated with intra-arc rifting generated melting from the same mantle source that produced magmas more enriched in incompatible trace elements and subduction components; these magmas are high-K, not depleted relative to N-MORB melts with island arc signatures and rift-like characteristics. The fissure opening caused degassing during magma ascent, and the high-K melts fractionated at anhydrous conditions. These high-K rocks contributed to the formation of the upper parts of stratovolcanoes. At the beginning of Holocene, the high-K rocks became prevalent and formed cinder cones and associated lava fields along the fissure zone. However, some features, including 1975–1976 Northern Breakthrough, are represented by middle-K high-Mg rocks, suggesting that both middle-K and high-K melts still exist in the Tolbachik system. Our results show that fractional crystallization at different water conditions and a variably depleted upper mantle source are responsible for all observed variations in rocks within the Tolbachik volcanic massif. Sr–Nd isotopes are consistent with 2–4 crustal assimilation during formation of the pedestal and stratovolcanoes, while the young lava fields do not show evidence of crustal assimilation. Major and trace element data coupled with K–Ar dating provide strong evidence that Mount Povorotnaya, located in 8 km northeast of Plosky Tolbachik, is an old block of the Tolbachik massif pedestal and for the moment it is the oldest (306 ka) known object in Klyuchevskaya group of volcanoes.
Clarke Amanda B., Ongaro Tomaso, Belousov Alexander Vulcanian Eruptions // Encyclopedia of Volcanoes. Academic Press: Elsevier. 2015. P. 505-518.





 

Рекомендуемые браузеры для просмотра данного сайта: Google Chrome, Mozilla Firefox, Opera, Yandex. Использование другого браузера может повлечь некорректное отображение содержимого веб-страниц.
 
Условия использования материалов и сервисов Геопортала

Copyright © Институт вулканологии и сейсмологии ДВО РАН, 2010-2017. Пользовательское соглашение.
Любое использование либо копирование материалов или подборки материалов Геопортала может осуществляться лишь с разрешения правообладателя и только при наличии ссылки на geoportal.kscnet.ru
 
©Design: roman@kscnet.ru