Group by:  
Jump to:
Records: 2687
Bergal-Kuvikas Olga, Buslov M.M., Bushenkova N.A., Dolgaya A.A. Transition from the Continental Margin of Kamchatka to the Island Arc of the Kurile Islands: Features of Volcanism, Crustal Deformation and Geophysical Parameters of the Slab // Russian Geology and Geophysics. 2023. doi: 10.2113/RGG20234558.
Bergal-Kuvikas Olga, Chugaev Andrey, Larionova Yulia, Cherkashin Roman, Nuzhdina I.N., Muravyev Y.D. Major, Trace Element and Sr–Nd–Pb Isotopic Geochemistry of Gorshkov Vent (18.02–21.03.2021), Klyuchevskoy Volcano (Kamchatka, Russia): Restarting a New Cycle of Volcanic Activity? // Geochemistry International. 2023. Vol. 3. doi: 10.1134/S0016702923030035.
Bushenkova N.A., Koulakov I.Yu., Bergal-Kuvikas Olga, Shapiro Nikolay M., Gordeev E.I., Chebrov D.V., Abkadyrov Ilyas, Jakovlev Andrey, Stupina Tatiana, Novgorodova A., Droznina S.Ya., Huang H. Connections between arc volcanoes in Central Kamchatka and the subducting slab inferred from local earthquake seismic tomography // Journal of Volcanology and Geothermal Research. 2023. Vol. 107768.
The area of Central Kamchatka limited by latitudes of 52.5 and 54 degrees includes six active volcanoes (Avacha, Koryaksky, Zhupanovsky, Mutnovsky, Gorely and Opala), as well as a number of dormant and extinct stratovolcanoes, monogenic cones and large calderas. Furthermore, it contains the Malko-Petropavlovsk fracture zone (MPZ), which marks the boundary between two distinct subduction regimes to the south and to the north. We present a new seismic tomography model for this area, which was constructed based on the joint use of data of the Kamchatkan permanent seismic stations and a temporary network installed in the region in 2019–2020. A series of synthetic tests have demonstrated fair resolution of the derived seismic velocity structures in the crust and in the mantle wedge down to ~150 km. The distributions of the P and S wave velocities, and especially the Vp/Vs ratio, clearly highlight the connection between the volcanic centers in Central Kamchatka and the subducting slab. At depths below 40 km depth, we observe two large low-velocity anomalies centered below Zhupanovsky and Mutnovsky volcanoes and covering all other volcanoes in the area. In the vertical sections, the corresponding anomalies of high Vp/Vs ratio have mushroom shapes with the heads spreading along the bottom of the crust, which probably represent the underplating of magma material that feeds the volcanoes of the groups. The tomography results also reveal some important tectonic features, such as a V-shaped fault system in the Avacha Graben, which is the part of the MPZ.
Cherkashin Roman, Bergal-Kuvikas Olga, Chugaev Andrey, Larionova Yulia, Bindeman Ilya, Khomchanovsky Anton, Plutahina Ekaterina Conditions and Magmas Sources of the Summit and Flank Eruptions of Klyuchevskoy Volcano in 2020–2021: Isotope (Sr–Nd–Pb–O)-geochemical data // Petrology. 2023. Vol. 31. № 3. doi: 10.1134/S0869591123030037.
Girina O.A., Manevich A.G., Loupian E.A., Uvarov I.A., Korolev S.P., Sorokin A.A., Romanova I.M., Kramareva L.S., Burtsev M.A. Monitoring the Thermal Activity of Kamchatkan Volcanoes during 2015–2022 Using Remote Sensing // Remote Sensing. 2023. Vol. 15. Vol. 19. № 4775.
The powerful explosive eruptions with large volumes of volcanic ash pose a great danger to the population and jet aircraft. Global experience in monitoring volcanoes and observing changes in the parameters of their thermal anomalies is successfully used to analyze the activity of volcanoes and predict their danger to the population. The Kamchatka Peninsula in Russia, with its 30 active volcanoes, is one of the most volcanically active regions in the world. The article considers the thermal activity in 2015–2022 of the Klyuchevskoy, Sheveluch, Bezymianny, and Karymsky volcanoes, whose rock composition varies from basaltic andesite to dacite. This study is based on the analysis of the Value of Temperature Difference between the thermal Anomaly and the Background (the VTDAB), obtained by manual processing of the AVHRR, MODIS, VIIRS, and MSU-MR satellite data in the VolSatView information system. Based on the VTDAB data, the following “background activity of the volcanoes” was determined: 20 °C for Sheveluch and Bezymianny, 12 °C for Klyuchevskoy, and 13–15 °C for Karymsky. This study showed that the highest temperature of the thermal anomaly corresponds to the juvenile magmatic material that arrived on the earth’s surface. The highest VTDAB is different for each volcano; it depends on the composition of the eruptive products produced by the volcano and on the character of an eruption. A joint analysis of the dynamics of the eruption of each volcano and changes in its thermal activity made it possible to determine the range of the VTDAB for different phases of a volcanic eruption.
Kiryukhin A.V., Bergal-Kuvikas Olga, Lemzikov M.V. Magmatic activity of Klyuchevskoy volcano triggering eruptions of Bezymianny volcano based on seismological and petrological data // Journal of Volcanology and Geothermal Research. 2023. doi: 10.1016/j.jvolgeores.2023.107892.
Korolev S.P., Urmanov I.P., Sorokin A.A., Girina O.A. Detecting Volcano Thermal Activity in Night Images Using Machine Learning and Computer Vision // Remote Sensing. 2023. Vol. 15. Vol. 19. № 4815.
One of the most important tasks when studying volcanic activity is to monitor their thermal radiation. To fix and assess the evolution of thermal anomalies in areas of volcanoes, specialized hardware-thermal imagers are usually used, as well as specialized instruments of modern satellite systems. The data obtained with their help contain information that makes it relatively easy to track changes in temperature and the size of a thermal anomaly. At the same time, due to the high cost of such complexes and other limitations, thermal imagers sometimes cannot be used to solve scientific problems related to the study of volcanoes. In the current paper, day/night video cameras with an infrared-cut filter are considered as an alternative to specialized tools for monitoring volcanoes’ thermal activity. In the daytime, a camera operated in the visible range, and at night the filter was removed, increasing the camera’s light sensitivity by allowing near-infrared light to hit the sensor. In that mode, a visible thermal anomaly could be registered on images, as well as other bright glows, flares, and other artifacts. The purpose of this study is to detect thermal anomalies on night images, separate them from other bright areas, and find their characteristics, which could be used for volcano activity monitoring. Using the image archive of the Sheveluch volcano as an example, this article presents the results of developing a computer algorithm that makes it possible to find and classify thermal anomalies on video frames with an accuracy of 98%. The test results are presented, along with their validation based on thermal activity data obtained from satellite systems.
Ladygin V.М., Girina O.A., Frolova Yu.V. The Petrophysical Properties and Strength of Extrusive Rocks Discharged by Bezymianny Volcano, Kamchatka // Journal of Volcanology and Seismology. 2023. Vol. 17. № 3. P. 159-174.
This is the first petrophysical study of extrusive rocks (dacites to andesites) discharged by Bezymianny Volcano. We provide a comparative description of properties for extrusive rocks in accordance with identified age groups. We show the dynamics in the variation of extrusive rock properties in relation to their ages, with the result that the older a rock the higher are its density, strength, and elastic parameters. Rocks petrophysical features are compared between extrusive domes and lava flows. We argue for petrophysical properties to be applicable for deriving more accurate results for the genesis of rocks having similar petrophysical properties, in particular, rocks of extrusive and effusive origin.
Бергаль-Кувикас О.В., Буслов М.М., Бушенкова Н.А., Долгая А.А. Переход от континентальной окраины Камчатки к островной дуге Курильских островов: Особенности проявления вулканизма, деформации земной коры и геофизические параметры слэба // Геология и геофизика. 2023. doi: 10.15372/GiG2023136.
Гирина О.А., Гордеев Е.И., Озеров А.Ю., Маневич А.Г., Мельников Д.В., Романова И.М., Нуждаев А.А. 30 лет Камчатской группе реагирования на вулканические извержения (KVERT) // Вулканизм и связанные с ним процессы. Материалы XXVI ежегодной научной конференции, посвящённой Дню вулканолога, 30-31 марта 2023 г., Петропавловск-Камчатский. Петропавловск-Камчатский: ИВиС ДВО РАН. 2023. С. 34-37.