Главная БиблиографияПо авторам
 
 Библиография
Вулкан: Расширенный поиск

Выбрать:   |   Все   |   A   |   B   |   C   |   D   |   E   |   F   |   G   |   H   |   I   |   J   |   K   |   L   |   M   |   N   |   O   |   P   |   R   |   S   |   T   |   V   |   W   |   Y   |   Z   |   А   |   Б   |   В   |   Г   |   Д   |   Е   |   Ж   |   З   |   И   |   К   |   Л   |   М   |   Н   |   О   |   П   |   Р   |   С   |   Т   |   У   |   Ф   |   Х   |   Ц   |   Ч   |   Ш   |   Э   |   Я   |    Количество записей: 115
Страницы:  1 2 3 4 5 6
 G
Gavrilenko M., Carr M., Herzberg C., Ozerov A. Pyroxenite is a possible cause of enriched magmas in island arc settings: Gorely volcano (Kamchatka) // Abstract V31A-2666 presented at 2013 Fall Meeting, AGU, San Francisco, Calif., 9-13 Dec.. 2013.
Gavrilenko M., Herzberg C., Portnyagin M., Ozerov A. Identification of Source Lithology at South Segment of Kamchatka Subduction Zone // Abstract V31A-2761 presented at 2012 Fall Meeting, AGU, San Francisco, Calif., 3-7 Dec. 2012.
Gavrilenko M., Herzberg C., Vidito C., Carr M., Tenner T., Ozerov A. A Calcium-in-Olivine Geohygrometer and its Application to Subduction Zone Magmatism // Journal of Petrology. 2016. V. 57. № 9. P. 1811-1832. doi:10.1093/petrology/egw062.    Аннотация
High-precision electron microprobe analyses were obtained on olivine grains from Klyuchevskoy, Shiveluch and Gorely volcanoes in the Kamchatka Arc; Irazu, Platanar and Barva volcanoes of the Central American Arc; and mid-ocean ridge basalt (MORB) from the Siqueiros Transform. Calcium contents of these subduction zone olivines are lower than those for olivines from modern MORB, Archean komatiite and Hawaii. A role for magmatic H2O is likely for subduction zone olivines, and we have explored the suggestion of earlier workers that it has affected the partitioning of CaO between olivine and silicate melt. We provide a provisional calibration of DCaO Ol/L as a function of magmatic MgO and H2O, based on nominally anhydrous experiments and minimally degassed H2O contents of olivine-hosted melt inclusions. Application of our geohygrometer typically yields 3–4 wt % magmatic H2O at the Kamchatka and Central American arcs for olivines having 1000 ppm Ca, which agrees with H2O maxima from melt inclusion studies; Cerro Negro and Shiveluch volcanoes are exceptions, with about 6% H2O. High-precision electron microprobe analyses with 10–20 lm spatial resolution on some olivine grains from Klyuchevskoy and Shiveluch show a decrease in Ca content from the core centers to the rim contacts, and a sharp increase in Ca in olivine rims. We suggest that the zoning of Ca in olivine from subduction zone lavas may provide the first petrological record of temporal changes that occur during hydration of the mantle wedge and dehydration during ascent, and we predict olivine H2O contents that can be tested by secondary ionization mass spectrometry analysis.
Gavrilenko M., Ozerov A. Evolution of the magmatic melts at Gorely volcano (Kamchatka) // 2009 Portland Geological Society of America Annual Meeting (18-21 October 2009). Abstracts with Programs. 2009. V. 41. № 7. P. 645
Gavrilenko M., Ozerov A. High-Magnesia Basalts – Source of Calc-Alkaline Series of Gorely Volcano (Kamchatka) // 6th Biennial Workshop on Japan-Kamchatka-Alaska Subduction Processes (JKASP-2009). Fairbanks, Alaska (USA). June 22-26, 2009. 2009.
Gavrilenko M., Ozerov A. Mineralogical and Geochemical Characteristics of High-Magnesian Basalts of Gorely volcano (Southern Kamchatka): Implication for Mantle Source // Abstract V43C-2584 presented at 2011 Fall Meeting, AGU, San Francisco, Calif., 5-9 Dec.. 2011.
Gavrilenko M., Ozerov A. The Sub-Crustal Magma Chamber Existence and Magma Ascent Rate for Klyuchevskoy Volcano (Kamchatka): Constrains from Ni Zonation in Olivine Phenocrysts // Abstract V51A-4726 presented at 2014 Fall Meeting, AGU, San Francisco, Calif., 15-19 Dec.. 2014.
Gavrilenko M., Ozerov A., Kyle P., Carr M., Nikulin A. Magma mixing and degassing processes in the magma chamber of Gorely volcano (Kamchatka): evidence from wholerock and olivine chemistry, Abstract V43B-3120 presented at 2015 Fall Meeting, AGU, San Francisco, Calif., 14-18 Dec.. 2015.
Gavrilenko M., Ozerov A., Kyle P., Eichelberger J. Gorely volcano (Southern Kamchatka) - petrochemical characteristics of magmatic evolutional series // IAVCEI 2008 - General Assembly, Reykjavik, Iceland. Abstracts. 2008. P. 50
Gavrilenko M., Ozerov A., Kyle P., Eichelberger J. Magmatic melts evolution at Gorely volcano (Southern Kamchatka) // 33rd International Geological Congress. Oslo, Norway. Abstracts. 2008.
Gavrilenko M.G, Ozerov A.Yu. Geochemical similarities between the pre-caldera and modern evolutionary series of eruptive products from Gorely volcano, Kamchatka // 2010 Fall Meeting, AGU, San Francisco, Calif., 13-17 Dec.. 2010. P. V21B-2333.
Gavrilenko M.G, Ozerov A.Yu. Petrochemical Characteristics of Gorely Volcano (Southern Kamchatka) Magmatic Series // “CoV6-Tenerife 2010” – Cities on Volcanoes 6, Puerto de la Cruz, Tenerife, Canary Islands, Spain May 31 - June 4, 2010. 2010.
Gavrilenko M.G, Ozerov A.Yu. The chemical composition of the accessory minerals inclusions in the olivine and pyroxene phenocrysts, as an indicator of the calc-alkaline magmas evolution conditions at the Gorely volcano (Kamchatka) // 2010 GSA Denver Annual Meeting (31 October – 3 November 2010). Geological Society of America Abstracts with Programs. Denver: GSA. 2010. V. 42. № 5. P. 626
Gavrilenko M.G, Ozerov A.Yu., Kyle P., Meshalkin V. The magmatic melts evolution of Gorely volcano (Kamchatka) // 32nd International Geological Congress. Florence, Italy. 2004, Abstracts. 2004. V. Part 1. P. 407
Gavrilenko M.G., Ozerov A.Yu., Kyle P.R., Eichelberger J.C. Petrological and Geochemical Characteristics of Magmatic Melts at Gorely Volcano, Kamchatka, Russia // AGU Fall Meeting 2006. Eos Trans. AGU, 87(52), Fall Meet. Suppl., Abstracts. 2006. P. V11A-0558.
Gavrilenko Maxim, Ozerov Alexey, Kyle Philip R., Carr Michael J., Nikulin Alex, Vidito Christopher, Danyushevsky Leonid Abrupt transition from fractional crystallization to magma mixing at Gorely volcano (Kamchatka) after caldera collapse // Bulletin of Volcanology. 2016. V. 78. № 7. doi:10.1007/s00445-016-1038-z.    Аннотация
A series of large caldera-forming eruptions (361–38 ka) transformed Gorely volcano, southern Kamchatka Peninsula, from a shield-type system dominated by fractional crystallization processes to a composite volcanic center, exhibiting geochemical evidence of magma mixing. Old Gorely, an early shield volcano (700–361 ka), was followed by Young Gorely eruptions. Calc-alkaline high magnesium basalt to rhyolite lavas have been erupted from Gorely volcano since the Pleistocene. Fractional crystallization dominated evolution of the Old Gorely magmas, whereas magma mixing is more prominent in the Young Gorely eruptive products. The role of rechargeevacuation processes in Gorely magma evolution is negligible (a closed magmatic system); however, crustal rock assimilation plays a significant role for the evolved magmas. Most Gorely magmas differentiate in a shallow magmatic system at pressures up to 300 MPa, ∼3 wt% H2O, and oxygen fugacity of ∼QFM + 1.5 log units. Magma temperatures of 1123–1218 °C were measured using aluminum distribution between olivine and spinel in Old and Young Gorely basalts. The crystallization sequence of major minerals for Old Gorely was as follows: olivine and spinel (Ol + Sp) for mafic compositions (more than 5 wt% of MgO); clinopyroxene and plagioclase crystallized at ∼5 wt% of MgO (Ol +Cpx + Plag) and magnetite at ∼3.5 wt% of MgO (Ol + Cpx + Plag +Mt). We show that the shallow magma chamber evolution of Old Gorely occurs under conditions of decompression and degassing. We find that the caldera-forming eruption(s) modified the magma plumbing geometry. This led to a change in the dominant magma evolution process from fractional crystallization to magma mixing. We further suggest that disruption of the magma chamber and accompanying change in differentiation process have the potential to transform a shield volcanic system to that of composite cone on a global scale.
Gilichinsky Michael, Melnikov Dmitry, Melekestsev Ivan, Zaretskaya Natasha, Inbar Moshe Morphometric measurements of cinder cones from digital elevation models of Tolbachik volcanic field, central Kamchatka // Canadian Journal of Remote Sensing. 2010. V. 36. V. 4. P. 287-300.
Girina O.A. 1977-2010 Activity of Bezymianny Volcano // Abstracts. International Workshop “JKASP-7”. Petropavlovsk-Kamchatsky. August 25-30. 2011. 2011. P. 54
Girina O.A. A thermal anomaly as a precursor for predictions of strong explosive volcanic eruptions // Abstracts. IAVCEI 2013 Scientific Assembly, July 20 - 24. Kagoshima, Japan: 2013. № 1357-1.
Girina O.A. Chronology of Bezymianny Volcano activity, 1956-2010 // Journal of Volcanology and Geothermal Research. 2013. V. 263. P. 22-41. doi: 10.1016/j.jvolgeores.2013.05.002.    Аннотация
Bezymianny Volcano is one of the most active volcanoes in the world. In 1955, for the first time in history, Bezymianny started to erupt and after six months produced a catastrophic eruption with a total volume of eruptive products of more than 3 km3. Following explosive eruption, a lava dome began to grow in the resulting caldera. Lava dome growth continued intermittently for the next 57 years and continues today. During this extended period of lava dome growth, 44 Vulcanian-type strong explosive eruptions occurred between 1965 and 2012. This paper presents a summary of activity at Bezymianny Volcano from 1956 to 2010 with a focus on descriptive details for each event.





 

Рекомендуемые браузеры для просмотра данного сайта: Google Chrome, Mozilla Firefox, Opera, Yandex. Использование другого браузера может повлечь некорректное отображение содержимого веб-страниц.
 
Условия использования материалов и сервисов Геопортала

Copyright © Институт вулканологии и сейсмологии ДВО РАН, 2010-2019. Пользовательское соглашение.
Любое использование либо копирование материалов или подборки материалов Геопортала может осуществляться лишь с разрешения правообладателя и только при наличии ссылки на geoportal.kscnet.ru
 
©Design: roman@kscnet.ru