Библиография
Вулкан:
Группировать:  
Выбрать:     Все     A     B     C     D     E     F     G     H     I     J     K     L     M     N     O     P     R     S     T     V     W     Y     Z     А     Б     В     Г     Д     Е     Ж     З     И     К     Л     М     Н     О     П     Р     С     Т     У     Ф     Х     Ц     Ч     Ш     Щ     Э     Я     
Записей: 9
Страницы:  1
 L
Ladygin V.М., Girina O.A., Frolova Yu.V. Petrophysical features of lava flows from Bezymyannyi volcano, Kamchatka // Journal of Volcanology and Seismology. 2012. Vol. 6. № 6. P. 341-351. https://doi.org/10.1134/S074204631206005X.
   Аннотация
This paper presents results from a study of lava flows that were discharged by Bezymyannyi Volcano at different times, from old (about 3500 years ago) to recent ones (1985–1989). We provide detailed descriptions of the composition, structure, and petrophysical properties for the main types of constituent rocks, which are andesites and basaltic andesites. It was found that porosity is the leading factor that controls rock properties, while the effects of structural and mineralogical features are less prominent. We demonstrate the variation in the properties of rocks that compose the lava flows in relation to their ages: the older a rock is, the higher its density and strength and the lower its porosity is.
Ladygin V.М., Girina O.A., Frolova Yu.V. The Petrophysical Properties and Strength of Extrusive Rocks Discharged by Bezymianny Volcano, Kamchatka // Journal of Volcanology and Seismology. 2023. Vol. 17. № 3. P. 159-174. https://doi.org/10.1134/S0742046323700197.
   Аннотация
This is the first petrophysical study of extrusive rocks (dacites to andesites) discharged by Bezymianny Volcano. We provide a comparative description of properties for extrusive rocks in accordance with identified age groups. We show the dynamics in the variation of extrusive rock properties in relation to their ages, with the result that the older a rock the higher are its density, strength, and elastic parameters. Rocks petrophysical features are compared between extrusive domes and lava flows. We argue for petrophysical properties to be applicable for deriving more accurate results for the genesis of rocks having similar petrophysical properties, in particular, rocks of extrusive and effusive origin.
Ladygin V.М., Girina O.A., Frolova Yu.V., Kondrashov I.A. The lava flows of Bezymianny volcano, Kamchatka // 4rd International Biennial Workshop on Subduction Processes emphasizing the Japan-Kurile-Kamchatka-Aleutian Arcs, Petropavlovsk-Kamchatsky, August 21-27, 2004. Petropavlovsk-Kamchatsky: IVS FED RAS. 2004. P. 63-64.
Lees J., Symons N., Chubarova O., Gorelchik V., Ozerov A. Tomographic Images of Klyuchevskoy Volcano P-Wave Velocity / Volcanism and Subduction: The Kamchatka Region. Geophysical Monograph Series. Washington, D. C.: American Geophysical Union. 2007. Vol. 172. P. 293-302.
   Аннотация
Three-dimensional structural images of the P-wave velocity below the edifice of the great Klyuchevskoy group of volcanoes in central Kamchatka are derived via tomographic inversion. The structures show a distinct low velocity feature extending from around 20 km depth to 35 km depth, indicating evidence of magma ponding near the Moho discontinuity. The extensive low velocity feature represents, at least to some degree, the source of the large volume of magma currently erupting at the surface near the Klyuchevskoy group.
Lees J.M., Johnson J., Gordeev E.I., Batereau K., Ozerov A.Yu. Volcanic Explosions at Karymsky: A Broadband Experiment Around the cone // AGU Spring Meeting 1997 Abstracts. Baltimore, Maryland: AGU. 1997. P. S11C-06.
Lees J.M., Johnson J.B., Gordeev E.I., Ozerov A.Yu. Degassing explosion at Karymsky volcano, Kamchatka // Abstracts of international seismic volcanic workshop on Kamchatkan and Alaska-Aleutian island arcs, Petropavlovsk-Kamchatsky, July 1-9, 1998. 1998. P. 23
Lees J.M., Ozerov A.Yu., Gordeev E.I. Quasi-Periodic Eruptions on Karymsky Volcano, Kamchatka, 1996 // AGU Spring Meeting 1997 Abstracts. Baltimore, Maryland: AGU. 1997. P. V22A-05.
Levin V., Park J., Brandon M., Lees J., Peyton V., Gordeev E., Ozerov A. Crust and upper mantle of Kamchatka from teleseismic receiver functions // Tectonophysics. 2002. № 358. P. 233-256.
   Аннотация
Teleseismic receiver functions (RFs) from a yearlong broadband seismological experiment in Kamchatka reveal regional variations in the Moho, anisotropy in the supra-slab mantle wedge, and, along the eastern coast, Ps converted phases from the steeply dipping slab. We analyze both radial- and transverse-component RFs in bin-averaged epicentral and backazimuthal sweeps, in order to detect Ps moveout and polarity variations diagnostic of interface depth, interface dip, and anisotropic fabric within the shallow mantle and crust. At some stations, the radial RF is overprinted by near-surface resonances, but anisotropic structure can be inferred from the transverse RF. Using forward modeling to match the observed RFs, we find Moho depth to range between 30 and 40 km across the peninsula, with a gradational crust –mantle transition beneath some stations along the eastern coast. Anisotropy beneath the Moho is required to fit the transverse RFs at most stations. Anisotropy in the lower crust is required at a minority of stations. Modeling the amplitude and backazimuthal variation of the Ps waveform suggests that an inclined axis of symmetry and 5 – 10% anisotropy are typical for the crust and the shallow mantle. The apparent symmetry axes of the anisotropic layers are typically trench-normal, but trench-parallel symmetry axes are found for stations APA and ESS, both at the fringes of the central Kamchatka depression. Transverse RFs from east-coast stations KRO, TUM, ZUP and PET are fit well by two anisotropic mantle layers with trench-normal symmetry axes and opposing tilts. Strong anisotropy in the supraslab mantle wedge suggests that the mantle ‘‘lithosphere’’ beneath the Kamchatka volcanic arc is actively deforming, strained either by wedge corner flow at depth or by trenchward suction of crust as the Pacific slab retreats.
Lundgren Paul, Kiryukhin Alexey, Milillo Pietro, Samsonov Sergey Dike model for the 2012–2013 Tolbachik eruption constrained by satellite radar interferometry observations // Journal of Volcanology and Geothermal Research. 2015. Vol. 307. P. 79 - 88. doi: 10.1016/j.jvolgeores.2015.05.011.
   Аннотация
Abstract A large dike intrusion and fissure eruption lasting 9 months began on November 27, 2013, beneath the south flank of Tolbachik Volcano, Kamchatka, Russia. The eruption was the most recent at Tolbachik since the Great Tolbachik Eruption from 1975 to 1976. The 2012 eruption was preceded by more than 6 months of seismicity that clustered beneath the east flank of the volcano along a NW–SE trend. Seismicity increased dramatically before the eruption, with propagation of the seismicity from the central volcano conduit in the final hours. We use interferometric synthetic aperture radar (InSAR) to compute relative displacement images (interferograms) for {SAR} data pairs spanning the eruption. We use satellite {SAR} data from the Canadian Space Agency's RADARSAT-2 and from the Italian Space Agency's COSMO-SkyMed missions. Data are modeled first through a Markov Chain Monte Carlo solution for a single tensile dislocation (dike). We then use a boundary element method that includes topography to model a distributed dike-opening model. We find the best-fitting dike dips 80° to the {WNW} with maximum opening of 6–8 m, localized in the near surface and more broadly distributed in distinct regions up to 3 km beneath the surface, which varies from 1 to 2 km elevation for the eruptive fissures. The distribution of dike opening and its correspondence with co-diking seismicity suggests that the dike propagated radially from Tolbachik's central conduit.