Главная БиблиографияПо авторам
Вулкан: Расширенный поиск

Выбрать:   |   Все   |   A   |   B   |   C   |   D   |   E   |   F   |   G   |   H   |   I   |   J   |   K   |   L   |   M   |   N   |   O   |   P   |   R   |   S   |   T   |   V   |   W   |   Y   |   Z   |   А   |   Б   |   В   |   Г   |   Д   |   Е   |   Ж   |   З   |   И   |   К   |   Л   |   М   |   Н   |   О   |   П   |   Р   |   С   |   Т   |   У   |   Ф   |   Х   |   Ц   |   Ч   |   Ш   |   Э   |   Я   |    Количество записей: 36
Страницы:  1 2
Maksimov A.P. A Physicochemical Model for Deep Degassing of Water-Rich Magma // Journal of Volcanology and Seismology. 2008. V. 2. № 5. P. 356-363. doi: 10.1134/S0742046308050059.    Аннотация
Two powerful eruptions of Quizapu vent on Cerro Azul Volcano, Chile are used as examples to discuss
the problem of effusive eruptions of magmas having high preeruptive volatile concentrations. A physicochemical
mechanism is proposed for magma degassing, with the volatiles being lost before coming to the surface.
The model is based on the interaction of magmas residing in chambers at different depths and on the difference
between the solubility of water in the melt and the water equilibrium concentration in a magma body
having a considerable vertical extent. The shallower chamber can accumulate the volatiles released from the
magma that is supplied from the deeper chamber. An explanation is provided of the dramatic differences in the
character of the 1846–1847 and 1932 eruptions, which had identical chemical–petrographic magma compositions.

На примере двух мощных извержений конуса Квицапу вулкана Сьерро-Ассуль (Чили) рассматривается проблема эффузивных извержений магм с высокими предэруптивными содержаниями летучих. Предложен физико-химический механизм дегазации магм с потерей ими летучих до появления на поверхности. Модель основана на взаимодействии магм, находившихся в разных по глубине очагах, и различии между растворимостью воды в расплаве и ее равновесной концентрацией в протяженном по вертикали магматическом теле. При этом малоглубинный очаг может аккумулировать летучие, выделяющиеся из магмы, поступающей в него из глубинного очага. Дается объяснение резких различий в характере извержений 1846–1847 и 1932 г. при идентичном химико-петрографическом составе магм.
http://repo.kscnet.ru/270/ [связанный ресурс]
Maksimov A.P., Firstov P.P., Girina O.A., Malyshev A.I. The June 1986 eruption of Bezymyannyi // Volcanology and Seismology. 1992. V. 13. № 1. P. 1-20.    Аннотация
This paper presents the results of visual observations, particle-size analysis, seismological observations, and acoustic measurements carried out during a small-magnitude eruption of Bezymyannyi in June 1986. A mlodel is proposed for the mechanism of the eruption. A specific character of the eruption is explained by a deeper localization of a gas-rich aagia portion in the conduit,
http://repo.kscnet.ru/797/ [связанный ресурс]
Matoba S., Shiraiwa T., Tsushima A., Sasaki H., Muravyev Y.D. Records of sea-ice extent and air temperature at the Sea of Okhotsk from an ice core of Mount Ichinsky, Kamchatka // Annaly of Glaciology . 2011. V. 52. № 58. P. 44-50. doi: 10.3189/172756411797252149.    Аннотация
The Sea of Okhotsk is the southernmost area in the Northern Hemisphere where seasonal sea ice is produced every year. The formation of sea ice drives thermohaline circulation in the Sea of Okhotsk, and this circulation supports the high productivity in the region. However, recent reports have indicated that sea-ice production in the Sea of Okhotsk is decreasing, raising concern that the decreased sea ice will affect not only circulation but also biological productivity in the sea. To reconstruct climatic changes in the Sea of Okhotsk region, we analyzed an ice core obtained from Ichinskaya Sopka (Mount Ichinsky), Kamchatka. We assumed that the remarkable negative peaks of δD in the ice core were caused by expansion of sea ice in the Sea of Okhotsk. Melt feature percentage (MFP), which indicates summer snowmelt, showed high values in the 1950–60s and the mid-1990s–2000s. The high MFP in the 1950–60s was assumed to be caused by an increase in cyclone activity reaching Kamchatka during a negative period of the Pacific Decadal Oscillation index, and that in the 1990–2000s may reflect the increase in solar irradiation during a positive period of the summer Arctic Oscillation index.
Maximov A.P. Effusive eruptions of silicic magmas and mechanism of the deep degassing of aqueous magmas // IV International Biennial Workshop on Subduction Processes emphasizing the Japan-Kurile-Kamchatka-Aleutian Arcs. August 21-27, 2004, Petropavlovsk-Kamchatsky. Petropavlovsk-Kamchatsky: Institute of Volcanology and Seismology FEB RAS. 2004. P. 148-151.
Maximov A.P. Petrological constraints on the mechanisms of catastrophic explosive eruptions of andesitic and acid magmas // 7 th Biennual Workshop on Japan-Kamchatka-Alaska Subduction Processes: Mitigating Risk Through International Volcano, Earthquake, and Tsunami Science (JKASP-2011). August 25-30, 2011, Petropavlovsk-Kamchatsky. Petropavlovsk-Kamchatsky: IVS FEB RAS. 2011. P. 257-258.
Maximov A.P. Physicochemical mechanism of the deep degassing of aqueous magmas // Experiment in Geosciences. 2001. V. 10. № 1. P. 122-123.
Maximov A.P. Rheological burst as mechanism of andesitic pyroclastics formation // IUGG XXI Gener. Assemb.. 1995, Boulder, USA. 1995. P. B411
Maximov A.P., Firstov P.P., Chernev I.I., Shapar V.N. Gas composition in Mutnovsky geothermal field: Role of meteoric water // 11th Gas Workshop. 1-10 September 2011, Kamchatka, Russia. 2011. P. 31
Maximov A.P., Puzankov M.Yu., Bazanova L.I. The Plumbing System at the Initial Period of the Young Cone Formation, Avachinsky Volcano (Kamchatka) // XXIV IUGG General Assembly. July 2-13, 2007, Perugia, Italy. Perugia, Italy: IUGG. 2007.
McGimsey R.G., Neal C.A., Girina O.A. 1998 Volcanic Activity in Alaska and Kamchatka: Summary of Events and Response of the Alaska Volcano Observatory // Open-File Report 2004-1033. U.S. Department of the Interior. USGS. 2003. 35 p.    Аннотация
In 1998 the Alaska Volcano Observatory responded to eruptive activity or suspect volcanic activity at 7 volcanic centers--Shrub mud, Augustine, Becharof Lake area, Chiginagak, Shishaldin, Akutan, and Korovin.

In addition to responding to eruptive activity at Alaska volcanoes, AVO also disseminated information for the Kamchatkan Volcanic Eruption Response Team about the 1998 activity of 4 Russian volcanoes-Sheveluch, Klyuchevskoy, Bezymianny, and Karymsky.
McGimsey R.G., Neal C.A., Girina O.A. 1999 Volcanic Activity in Alaska and Kamchatka: Summary of Events and Response of The Alaska Volcano Observatory // Open-File Report 2004-1033. U.S.Department of the Interior. USGS. 2004. 45 p.
McGimsey R.G., Neal C.A., Girina O.A. 2001 Volcanic Activity in Alaska and Kamchatka: Summary of Events and Response of the Alaska Volcano Observatory // Open-File Report 2004-1453. U.S. Department of the Interior. USGS. 2004. 53 p.
McGimsey R.G., Neal C.A., Girina O.A. 2003 Volcanic Activity in Alaska and Kamchatka: Summary of Events and Response of the Alaska Volcano Observatory // Open-File Report 2005-1310. U.S. Department of the Interior. USGS. 2005. 58 p.
McGimsey R.G., Neal C.A., Girina O.A., Chibisova M.V., Rybin A.V. 2009 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands—Summary of events and response of the Alaska Volcano Observatory // U.S. Geological Survey Scientific Investigations Report 2013–5213. U.S.G.S.. 2014. 125 p.    Аннотация
The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest, and reports of unusual activity at or near eight separate volcanic centers in Alaska during 2009. The year was highlighted by the eruption of Redoubt Volcano, one of three active volcanoes on the western side of Cook Inlet and near south-central Alaska's population and commerce centers, which comprise about 62 percent of the State's population of 710,213 (2010 census). AVO staff also participated in hazard communication and monitoring of multiple eruptions at ten volcanoes in Russia as part of its collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.
Melekestsev I.V. Ages and stages of development of the Kurile - Kamchatka active volcanoes // Arc Volcanism: Physics and Tectonics. Proceedings of a 1981 IAVCEI Symposium, Arc Volcanism, August-September, 1981, Tokyo and Hakone. Tokyo: Terra Scientific Publishing Co. 1983. P. 230-231.
Melekestsev I.V. On probability of catastrophic explosive eruptions in the Kurile - Kamchatka volcanic area in future // Kagoshima International Conference on Volcanoes. Abstracts. Kagoshima: 1988. P. 382
Melekestsev I.V., Braitseva O.A., Dvigalo V.N., Basanova L.I. Historical eruptions of Avacha volcano, Kamchatka. Attempt of modern interpretation and classification for long-term prediction of the types and parameters of future eruptions. Part 2 (1926-1991) // Volcanology and Seismology. 1994. V. 16. № 2. P. 93-114.    Аннотация
Previous data are summarized and new evidence is presented on the Avacha eruptions of 1926-1927, 1938, and 1945. The last eruption of January 1991 is described. The dynamics of the Avacha eruptive activity is considered for a period of 1737-1991. The eruptions are classified into different types. The type and size of a future event are predicted and the related hazard is assessed. It is recommended that the southwestern and southern sectors of the Avacha surrounding should be declared forbidden for residential or industrial construction because of a high volcanic hazard. -Journal summary
http://repo.kscnet.ru/160/ [связанный ресурс]
Melekestsev I.V., Braitseva O.A., Dvigalo V.N., Bazanova L.I. Historical eruptions of Avacha volcano, Kamchatka. Attempt of modern interpretation and classification for long-term prediction of the types and parameters of future eruptions. Part 1 (1737-1909) // Volcanology and Seismology. 1994. V. 15. № 6. P. 649-665.    Аннотация
Some of the previous views on the style of the Avacha eruptions during 1737-1909 are revised on the basis of new data obtained by the authors. The types of eruptions, their geological and geomorphological effects, and the related volcanic hazards are reassessed. All eruptions were explosive events, except for the 1894-1895 extrusive-explosive eruption. The eruptions of 1737, 1779, and 1827 are classified as large, the others, as mild or medium-size events. -from Journal summary
http://repo.kscnet.ru/55/ [связанный ресурс]
Melekestsev I.V., Braitseva O.A., Ponomareva V.V., Sulerzhitskiy L.D. Holocene catastrophic caldera-forming eruptions of Ksudach volcano, Kamchatka // Volcanology and Seismology. 1996. V. 17. № 4-5. P. 395-422.    Аннотация
Four Plinian eruptions of Ksudach have been reconstructed and dated by the carbon-14 method. The eruptions produced three collapse calderas: the KS1 eruption formed Caldera V 1700-1800 years ago, the KS2 and KS3 events produced Caldera IV 6000-6100 years ago, and the KS4 eruption formed Caldera III 8700-8800 years ago. The most violent eruption was the KS1 event. The sizes of the calderas were 4 × 6.5 km (V), 5 × 6 km (IV), and presumably 2-3 km across (III). Juvenile material was erupted in a rhythmic manner. The composition of the products was dominated by andesite (KS2 and KS4), dacite and rhyodacite (KS3), and rhyodacite (KS1). It is assumed that all caldera-forming eruptions were triggered by the injection of a new portion of high-temperature basic magma and its mixing with the cooling acid magma of the preexisting source. -from Journal summary

Реконструированы и датированы 14С-методом четыре плинианских извержения вулкана Ксудач, сформировавших три кальдеры обрушения: KCi и кальдеру V - 1700-1800 л. н.; КС2 + КС3 и кальдеру IV - 6000-6100 л. н.; КС4 и кальдеру III 8700-8800 л. н. Самым мощным было извержение KCi: 18-19 км3 пирокластики, высота эруптивной колонны до 23 км. Объем продуктов извержений КС2 + КС3 - 10-11 км3, КС4 - не менее 1,5-1,7 км3. Размеры кальдер: V - 4 X 6,5 км, IV - 5x6 км, поперечь III - предположительно 2-3 км. Вынос ювенильной пирокластики в ходе извержений было ритмичным. Каждый ритм начинался выбросом тефры, а завершался формированием пирокластических потоков. Состав продуктов варьировал от андезитов до риодацитов: КС2 и КС4 - преимущественно андезиты, КС3 - дациты и риодациты, KCi - риодацит. Предполагается, что "спусковой механизм" для начала всех кальдерообразующих извержений - внедрение свежей сильно нагретой магмы основного состава и смешение ее с остывающей кислой магмой существовавшего ранее очага. В соответствии со своими масштабами извержения должны были оказать влияние на климат и озоновый слой 3емли и найти отражение в виде кислотных пиков в Гренландском ледниковом щите.
http://repo.kscnet.ru/903/ [связанный ресурс]
Melekestsev I.V., Braitseva O.A., Sulerzhitskii L.D., Ogorodov N.V., Kozhemiaka N.N., Egorova I.A., Lupikina E.G. Age of Volcanoes in the Kurille-Kamchatka Zone // International Association of Volcanology and Chemistry of the Earth`s Interior. Sumposium on Volcanoes &Their Roots. Oxford: 1969. P. 138-139.


Рекомендуемые браузеры для просмотра данного сайта: Google Chrome, Mozilla Firefox, Opera, Yandex. Использование другого браузера может повлечь некорректное отображение содержимого веб-страниц.
Условия использования материалов и сервисов Геопортала

Copyright © Институт вулканологии и сейсмологии ДВО РАН, 2010-2017. Пользовательское соглашение.
Любое использование либо копирование материалов или подборки материалов Геопортала может осуществляться лишь с разрешения правообладателя и только при наличии ссылки на geoportal.kscnet.ru
©Design: roman@kscnet.ru