Выбрать:     Все     A     B     C     D     E     F     G     H     I     J     K     L     M     N     O     P     R     S     T     V     W     Y     Z     А     Б     В     Г     Д     Е     Ж     З     И     К     Л     М     Н     О     П     Р     С     Т     У     Ф     Х     Ц     Ч     Ш     Щ     Э     Я     
Записей: 50
Страницы:  1 2 3 4 5
Maksimov A.P. A Physicochemical Model for Deep Degassing of Water-Rich Magma // Journal of Volcanology and Seismology. 2008. Vol. 2. № 5. P. 356-363. doi: 10.1134/S0742046308050059.
Two powerful eruptions of Quizapu vent on Cerro Azul Volcano, Chile are used as examples to discuss
the problem of effusive eruptions of magmas having high preeruptive volatile concentrations. A physicochemical
mechanism is proposed for magma degassing, with the volatiles being lost before coming to the surface.
The model is based on the interaction of magmas residing in chambers at different depths and on the difference
between the solubility of water in the melt and the water equilibrium concentration in a magma body
having a considerable vertical extent. The shallower chamber can accumulate the volatiles released from the
magma that is supplied from the deeper chamber. An explanation is provided of the dramatic differences in the
character of the 1846–1847 and 1932 eruptions, which had identical chemical–petrographic magma compositions.
Maksimov A.P., Firstov P.P., Girina O.A., Malyshev A.I. The June 1986 eruption of Bezymyannyi // Volcanology and Seismology. 1992. Vol. 13. № 1. P. 1-20.
This paper presents the results of visual observations, particle-size analysis, seismological observations, and acoustic measurements carried out during a small-magnitude eruption of Bezymyannyi in June 1986. A mlodel is proposed for the mechanism of the eruption. A specific character of the eruption is explained by a deeper localization of a gas-rich aagia portion in the conduit,
Maleyev E.F. Two types of acid volcanism // Bulletin Volcanologique. 1967. Vol. 30. Vol. 1. P. 153-160. 8 p. doi:10.1007/BF02597665.
Malkovsky S.I., Sorokin A.A., Korolev S.P., Girina O.A., Loupian E.A. Models of Volcanic Ash Propagation for the Exploration of Explosive Eruptions of Kamchatka Volcanoes // JKASP-2018. Petropavlovsk-Kamchatsky: IVS FEB RAS. 2018.
Manevich A.G., Girina O.A., Melnikov D.V., Nuzhdaev A.A. 2016-2017 explosive eruptions of Kamchatka volcanoes based on KVERT data // JKASP-2018. Petropavlovsk-Kamchatsky: IVS FEB RAS. 2018.
Mania Rene, Walter Thomas, Belousova Marina, Belousov Alexander, Senyukov Sergey Deformations and Morphology Changes Associated with the 2016–2017 Eruption Sequence at Bezymianny Volcano, Kamchatka // Remote Sensing. 2019. № 11. P. 1278 doi: 10.3390/rs11111278.
Marchenko A. G., Volfson A. A., Morozov M. V., Khrol N. S., Steinberg G. S., Steinberg M. G. Geochemical Characteristics of Volcanogenic Deposits and Exhalation Mineralization in the Crater Part of the Active Kudryavy Volcano (Iturup Island of the Kuril Arc) // Geology of Ore Deposits. 2020. Vol. 62. № 2. P. 122-137. doi:10.1134/S1075701520020038.
Exhalation ore mineralization is developing in the crater part of the active Kudryavy volcano. Lithogeochemical sampling results have revealed that Re, Au, Ag, As, Bi, Cd, Cu, Ge, In, Mo, Pb, S, Sb, Se, Sn, Te, Tl, W, Zn, Rb, and Cs accumulate in solid fumarole formations. These elements are transported by high-temperature volcanic gases and are deposited in mineral phases in the near-surface horizons of fumarole fields under decreasing temperature conditions. The contents of rhenium and other metals in volcanic deposits of fumarole fields locally reach values characteristic of ore deposits. Zoning of lithogeochemical anomalies in ore element associations has been revealed, expressed by the series Re, Mo, W, Au, Cu, Ag, Zn, Cs, Ge → In → Bi, Cd, Pb, Sn, Tl → As, Sb, Se, Te, (Cu, Ag, Au) in the direction from the highest-temperature fumarole fields to less hot, reflecting their temperature zoning. It is demonstrated that lateral geochemical zoning is caused both by the ore element contents in fumarole gases, which depend on temperature, and by differences in the optimal temperature ranges in which various elements precipitate from gases. Signatures for similar exhalation mineral formation processes have been revealed that occurred in the recent geological past at the neighboring extinct Sredny volcano. This suggests the occurrence of similar processes within other volcanic systems of Iturup Island, which increases the prospects for detecting complex exhalation-related manifestations of rare, base, and noble metals.
Marhinin E.K., Stratula D.S. Relationship between chemical composition of volcanic rocks and depth of the seismofocal layer as shown by the Kliuchevskaya volcanic Grup (Kamchatka) and the Kurile-Kamchatka Island arc // Bulletin Volcanologique. 1973. Vol. 37. Vol. 2. P. 175-182. 8 p. doi:10.1007/BF02597129.
Markhinin E.K. On the State of Kunashir Island Volcanoes (March, 1974 - May, 1982) // Volcanology and Seismology. 1983. № 1. P. 45-52.
Markhinin E.K. Volcanism and the Biosphere // Volcanology and Seismology. 1988. Vol. 7. № 4. P. 483-496.