Bibliography
Volcano:
Group by:  
Records: 2752
Пилипенко Г.Ф. Особенности поверхностной разгрузки высокотемпературных гидротермальных систем (ГТС) // Вулканизм и связанные с ним процессы: Геотермия, действующие гидротермальные системы и рудообразование. Петропавловск-Камчатский: ИВ ДВНЦ АН СССР. 1985. Вып. 3. С. 80-81.
Геодинамика и вулканизм Курило-Камчатской островодужной системы / Отв. ред. Иванов Б.В. Петропавловск-Камчатский: ИВГиГ ДВО РАН. 2001. 428 с.
   Annotation
В сборнике представлены работы, отражающие современное состояние и пути решения следующих проблем: геодинамика современного вулканизма, современные движения в зонах активного вулканизма, структурная вулканология, тектоника и сейсмичность; активный вулканизм и вулканоопасность, цунамиопасность, мониторинг, генезис и механизм катастрофических извержений, методы прогнозирования;вопросы магмообразования, петрология и геохимия активного вулканического процесса.

Публикуемые материалы, несомненно, будут полезны для широкого круга исследователей - геологов, вулканологов, геофизиков, петрологов и геохимиков.
Мелекесцев И.В., Брайцева О.А., Пономарева В.В. Новый подход к определению понятия "действующий вулкан" / Геодинамика и вулканизм Курило-Камчатской островодужной системы. Петропавловск-Камчатский: ИВГиГ ДВО РАН. 2001. С. 191-203.
   Annotation
A new approach to definition of the term "active volcano" has been worked out on the basis of detailed reconstruction of the eruptive activity of Kamchatka volcanoes. We suggest to consider active those poligenous volcanoes whose at least a single eruption has been ascertained and dated over the last 3000-3500. Two sub-groups of active volcanoes have been distinguished: sub-group of active volcanoes with data available on the historically documented eruptions or fumarolic activity and the one of potentially active volcanoes without such data but whose eruptions have been revealed over the last 3500 years. Using similar criteria the potentially active fields of the areal basalt volcanism, regional zones of cinder cones and concentrated manifestation of the multivent extrusive volcanism are also distinguished. We propose to use data obtained for the new catalogue of active Kamchatka volcanoes and for the long-term prediction of volcanic activity and associated hazard.
Михайлюкова П.Г., Тутубалина О.В., Мельников Д.В., Зеленин Е.А. Количественная оценка параметров Трещинного Толбачинского извержения им. 50-летия ИВиС ДВО РАН и динамики вулканогенного рельефа на основе данных дистанционного зондирования // Современные проблемы дистанционного зондирования Земли из космоса. 2014. Т. 11. № 4. С. 351-359.
   Annotation
This paper presents results of study of the 2012-2013 Tolbachik fissure eruption on the basis of remote sensing
techniques.
We have calculated values of vertical displacements, lava thickness and the volume of the erupted lava. Values of
vertical displacements were estimated using a series of
radar interferometric pairs for the Tolbachik eruption zone.
These pairs correspond to the concluding phase of the erupti
on, when vertical displacements were relatively small.
Vertical displacements were calculated for parts of lava fields with coherence value over 0,4. The obtained values of
vertical displacement are typical for subsidence caused by cooling lava flows. The maximum value of subsidence is
27 cm for 24 days. The calculation of lava thickness was based on comparison of multitemporal DEMs. Height profiles measured by geodetic GPS receivers during fieldwork in August 2013 were used to estimate the quality of DEMs, derived from satellite imagery: freely available SRTM, SRTM-X, ASTER GDEM and the DEMs calculated at RDC ScanEx from two stereopairs of SPOT6 images (of 18.07.2013 and 11.10.2013). The RMS error for heights of SRTM-X and
SPOT 6 in relation to GPS data is within ±5 m. This enables to estimate the total thickness of new lava fields on the
basis of height differences between SRTM-X and SPOT 6 DEMs. Both SPOT 6 DEMs were used together to eliminate errors caused by clouds and snow. The maximum lava thickness is over 80 m. The volume of the erupted lava is 0,521±0,25 km3.
Абдурахманов А.И., Пискунов Б.Н., Смирнов И.Г., Федорченко В.И. Вулкан Алаид (Курильские острова) / Восточно-Азиатские островные системы (тектоника и вулканизм). 1978. С. 85-107.
Федорченко В.И., Абдурахманов А.И., Родионова Р.И. Вулканизм Курильской островной дуги: геология и петрогенезис / Отв. ред. Косыгин Ю.А. М.: Наука. 1989. 237 с.
Рашидов В.А., Аникин Л.П., Делемень И.Ф. Влияние извержения побочного вулкана Такетоми (1933-1934) на ландшафт острова Атласова (Северные Курилы) // На перекрестке континентов. Материалы XXXI Крашенинниковских чтений. Петропавловск-Камчатский: Камчатская краевая научная библиотека им. С.П. Крашенинникова. 2014. С. 307-310.
Зверев С.М. Результаты изучения осадочной толщи в Охотском море и Курило-Камчатской зоне Тихого океана / Строение земной коры в области перехода от Азиатского континента к Тихому океану. М.: Наука. 1964. С. 90-116.
Токарев П.И. Предвестники вулканических извержений // Вулканология и сейсмология. 1985. № 4. С. 108-119.
Набоко С.И., Главатских С.Ф. Элементы-индикаторы в эксгаляционном и гидротермальном процессах // Вулканология и сейсмология. 1985. № 4. С. 40-53.