Библиография
Вулкан:
Группировать:  
Записей: 2773
Статьи
Колосков А.В., Пузанков М.Ю., Ананьев В.В., Коваленко Д.В. Вулкан Большой Паялпан (Cрединный хребет, Камчатка). К проблеме конвергентности «островодужных» и «внутриплитных» петролого-геохимических признаков в магматической системе // Тихоокеанская геология. 2022. Т. 41. № 2. С. 3-24. doi:10.30911/0207-4028-2022-41-2-3-24.
   Аннотация
Представлены новые возрастные, минералогические, также изотопно-геохимические материалы по составу пород вулкана Большой Паялпан (Срединный хребет, Камчатка). Проведено сопоставление этих материалов с данными по вулканам Носичан и Белоголовский в составе единого Белоголовского вулканического центра. Базальты некка и верхнего лавового комплекса Б. Паялпана сходны по составу с трахибазальтами внутриплитного типа Белоголовского вулкана, андезибазальты нижнего лавового комплекса и конуса близки к породам островодужного типа вулкана Носичан. Анализ полученных материалов свидетельствует, что пространственное и временное сочетание проявлений внутриплитного и островодужного вулканизма на вулкане Б. Паялпан не является случайным, а может быть следствием изменения степени и глубины плавления одного и того же глубинного источника с участием мантийного диапира. Белоголовский вулканический центр сформировался в обстановке начавшего позднемиоценового-раннеплиоценового рифтогенеза. Последующая эволюция этого центра вплоть до его отмирания происходила в той же геодинамической обстановке при возрастании глубины и уменьшении степени плавления мантийного источника питания. Составы ранне-среднеплиоценового вулкана Носичан остаются островодужными в условиях начавшегося рифтогенеза, поскольку они связаны с мантийным резервуаром, располагавшемся на меньшей глубине и испытавшем большую степень плавления. По всей вероятности, крупные вулканические центры необходимо рассматривать как саморазвивающиеся геологические образования. Вулканический центр существует, пока подпитывается энергетикой и веществом мантийного плюма. По мере угасания эндогенной активности степень плавления уменьшается, а глубина плавления возрастает, островодужный тип вулканизма сменяется внутриплитным. Вулканический центр отмирает.
Колосков А.В., Флеров Г.Б. Проявление субщелочной основной магмы в пределах Срединного хребта Камчатки // Геология и геофизика. 1966. № 6. С. 25-31.
   Аннотация
Дается описание своеобразных пород субщелочного основного и среднего состава, распространенных в Срединном хребте Камчатки. Эти породы характеризуют вулканические, интрузивные и метасоматические образования, объединяемые авторами в единую вулкано-плутоническую формацию трахиандезит-габбро-сиенитового состава. Исходной магмой авторы считают базальтовую повышенной щелочности. Результаты петрографических работ, проведенных за последние годы в пределах Срединного хребта Камчатки, позволяют выделить в пределах его зону распространения своеобразных пород субщелочного состава.
Колосков А.В., Флеров Г.Б. Проявление субщелочной основной магмы в пределах Срединного хребта Камчатки // Известия Академии наук СССР. 1965. № 4. С. 35-41.
   Аннотация
Авторами настоящей статьи кратко описываются своеобразные пироксен-ортоклазовые метасоматические породы, приуроченные к области экзоконтакта порфировидных кварцевых сиенитов, прорывающих интрузив ультраосновных пород.
Колосков А.В., Флеров Г.Б., Перепелов А.Б., Мелекесцев И.В., Пузанков М.Ю., Философова Т.М. Этапы эволюции и петрология Кекукнайского вулканического массива как отражение магматизма тыловой зоны Курило-Камчатской островодужной системы. Часть 1. Геологическое положение и геохимический состав вулканических пород // Вулканология и сейсмология. 2011. № 5. С. 17-41.
   Аннотация
Выделено пять стадий эволюции четвертичного Кекукнайского вулканического массива (западный фланг Срединного хребта Камчатки): 1) докальдерная трахибазальтовая-андезибазальтовая, 2) экструзивная трахиандезит-трахидацитовая, 3) ранняя трахибазальтовая, 4) средняя гавайит-муджиеритовая (с единичными проявлениями андезибазальтов) и 5) поздняя трахибазальт-гавайит-муджиеритовая (с единичными проявлениями андезитов) - ареального вулканизма. По петрологическим данным среди пород массива выделены островодужный и внутриплитный геохимические типы. Ведущую роль в пет-рогенезисе играла динамика флюидной фазы при подчиненной роли процессов фракционной кристаллизации и гибридизма. Последовательное насыщение пород флюидной фазой в ходе эволюции расплавов было прервано в период кальдерообразования, когда осуществилась экстракция большей части флюидомобильных элементов и кремнезема. Геологические и петрологические материалы свидетельствуют о том, что формирование массива произошло в обстановке задугового вулканического бассейна в условиях начавшегося рифтогенеза, при активном участии компонентов мантийного плюма.
Колосков А.В., Флеров Г.Б., Перепелов А.Б., Мелекесцев И.В., Пузанков М.Ю., Философова Т.М. Этапы эволюции и петрология Кекукнайского вулканического массива как отражение магматизма тыловой зоны Курило-Камчатской островодужной системы. Часть 2. Петролого-минералогические особенности, модель петрогенезиса // Вулканология и сейсмология. 2013. № 2. С. 63-89.
   Аннотация
Кекукнайский массив сформировался в результате тектоно-магматической деятельности, выразившейся образованием щитообразного вулкана, кальдерной депрессии с сопутствующим внедрением экструзий, и завершившейся интенсивным посткальдерным ареальным вулканизмом. Проведено детальное рассмотрение особенностей минералогического состава пород массива. Использование уже имеющихся и дополнительно выявленных индикаторных возможностей породообразующих минералов позволило восстановить общую картину эволюции магматических расплавов и условия кристаллизации пород (различная флюидонасыщенность-обводненность и окисленность системы). Существенно островодужные или внутриплитные характеристики в составе пород массива проявлены на разных стадиях развития единой флюидно-магматической системы. Декомпрессионная эволюция материнской глубинной базанитовой магмы была реализована появлением в промежуточных очагах дочерних магм трахибазальтового (докальдерный этап развития системы) или гавайитового (ареальный вулканизм) состава. Дальнейшая эманационно-магматическая дифференциация этих расплавов в сочетании с кристаллизационной дифференциации в условиях меняющейся P-T-f02 обстановки и привела к образованию всего многообразия пород Кекукнайского массива.
Комкова Л.А., Егорова И.А. Генезис и возраст железо-марганцевого рудопроявления в районе вулкана Иульт (Камчатка) // Вулканизм, структуры и рудообразование: тез. докл. VII Всесоюз. вулканол. совещ. Иркутск, июнь 1992 г. Петропавловск-Камчатский: ИВ ДВО РАН, ИВГиГ ДВО РАН, НИГТЦ ДВО РАН. 1992. С. 88
Конов А.С., Озеров А.Ю. Закономерности в динамике извержений Ключевского вулкана и сопровождающем их вулканическом дрожании // Вулканология и сейсмология. 1988. № 3. С. 21-38.
Конради С.А., Келль Н.Г. Геологический Отдел Камчатской экспедиции 1908-1911 г.г. // Известия Государственного Русского географического общества. 1925. Т. 57. Вып. 1. С. 3-32.
Константинова А.М., Гирина О.А., Мальковский С.И., Кашницкий А.В., Лупян Е.А. Сравнение информации о пепловых шлейфах вулканов, получаемой на основе численного моделирования и обработки спутниковых данных // Современные проблемы дистанционного зондирования Земли из космоса. Тезисы докладов. Шестнадцатая Всероссийская открытая конференция. 12-16 ноября 2018 г. М.: ИКИ РАН. 2018. С. 369
Копылова Г.Н., Болдина С.В. О связи изменений уровня воды в скважине E-1, Камчатка, с активизацией вулкана Корякский в 2008-2009 гг. и сильными (M ≥ 5) землетрясениями // Вулканология и сейсмология. 2012. № 5. С. 41-54.
   Аннотация
Рассматриваются изменения уровня воды в скважине Е-1 за период времени с мая 2006 по 2010 гг. С середины 2006 по декабрь 2009 гг. в скважине развивался тренд повышения уровня с аномально высокой скоростью. Такое повышение уровня рассматривается как реакция резервуара газонасыщенных подземных вод в вулканогенно-осадочных отложениях Авачинской вулканотектонической депрессии на развитие деформации объемного сжатия при подготовке и реализации роя слабых землетрясений (КSмакс=8.3) в районе вулкана Корякский и его фреатическом извержении. По величине амплитуды повышения уровня воды и с учетом инерционности водообмена между резервуаром и стволом скважины оценена величина объемного сжатия  = -(4.1 - 9.9)10-6 Во время действия источника деформации наблюдалось понижение чувствительности гидродинамического режима скважины к процессами подготовки сильных (М≥5.0) тектонических землетрясений.