Group by:  
Jump to:     All     Articles     Books     Books sections     Dissertations     Conference Items     Documents     Copyright certificates     Weblinks     Other     
Records: 2095
Меняйлов И.А., Никитина Л.П., Шапарь В.Н. Химический состав и содержание металлов газовых выделений из кратера вулкана Алаид при извержении 1981 г. // Вулканология и сейсмология. 1986. № 1. С. 26-31.
Меняйлов И.А., Никитина Л.П., Шапарь В.Н., Гриненко В.А., Буачидзе Г.И., Стойбер Р., Уильямс С. Химический состав, металлоносность и изотопия фумарольных газов вулкана Момотомбо (Никарагуа) в 1982 г. // Вулканология и сейсмология. 1986. № 2. С. 60-70.
Меняйлов И.А., Никитина Л.П., Шапарь В.Н., Литасова С.Н. Водные вытяжки из пеплов Новых Толбачинских вулканов // Бюллетень вулканологических станций. 1979. № 56. С. 149-161.
Меняйлов И.А., Овсянников А.А., Широков В.А. Извержение вулкана Эбеко в октябре-декабре 1987 г. // Вулканология и сейсмология. 1988. № 3. С. 105-108.
Милановский Е.Е., Короновский Н.В. «Туфолавы» и родственные им образования Центрального Кавказа // Труды Лаборатории вулканологии АН СССР. 1961. Вып. 20. С. 72-89.
Миллер Е.Е. О туфолавах Казахстана // Труды Лаборатории вулканологии АН СССР. 1961. Вып. 20. С. 169-176.
Михайлова-Филиппова М.И., Федотов С.А. Течение магмы по цилиндрическому каналу, питающему вулкан: математическая модель // Вулканология и сейсмология. 1996. № 6. С. 20-30.
A mathematical model and a method of computation are developed for the flow of magma with temperature-dependent viscosity in the conduit of a volcano. An example involves the following parameters: conduit radius is 10 m, depth to the magma chamber is 30 km, the overpressure, magma temperature and viscosity in the chamber are 20 bars, 1300° C, and 104, Ю5, 106Pa s, respectively. The initial phase of conduit operation lasting less than 10 years is considered. Conditions are determined under which the conduit freezes (stopping the extrusion), a quasistationary behavior sets in (steady flow), and the flow heats the conduit wall intensively.
Михайлюкова П.Г., Тутубалина О.В., Мельников Д.В., Зеленин Е.А. Количественная оценка параметров Трещинного Толбачинского извержения им. 50-летия ИВиС ДВО РАН и динамики вулканогенного рельефа на основе данных дистанционного зондирования // Современные проблемы дистанционного зондирования Земли из космоса. 2014. Т. 11. № 4. С. 351-359.
This paper presents results of study of the 2012-2013 Tolbachik fissure eruption on the basis of remote sensing
We have calculated values of vertical displacements, lava thickness and the volume of the erupted lava. Values of
vertical displacements were estimated using a series of
radar interferometric pairs for the Tolbachik eruption zone.
These pairs correspond to the concluding phase of the erupti
on, when vertical displacements were relatively small.
Vertical displacements were calculated for parts of lava fields with coherence value over 0,4. The obtained values of
vertical displacement are typical for subsidence caused by cooling lava flows. The maximum value of subsidence is
27 cm for 24 days. The calculation of lava thickness was based on comparison of multitemporal DEMs. Height profiles measured by geodetic GPS receivers during fieldwork in August 2013 were used to estimate the quality of DEMs, derived from satellite imagery: freely available SRTM, SRTM-X, ASTER GDEM and the DEMs calculated at RDC ScanEx from two stereopairs of SPOT6 images (of 18.07.2013 and 11.10.2013). The RMS error for heights of SRTM-X and
SPOT 6 in relation to GPS data is within ±5 m. This enables to estimate the total thickness of new lava fields on the
basis of height differences between SRTM-X and SPOT 6 DEMs. Both SPOT 6 DEMs were used together to eliminate errors caused by clouds and snow. The maximum lava thickness is over 80 m. The volume of the erupted lava is 0,521±0,25 km3.
Моисеенко К.Б., Малик Н.А. Численное решение обратной задачи восстановления суммарной изверженной массы вулканического пепла и ее распределения по высотам в эруптивном облаке // Вестник КРАУНЦ. Серия: Науки о Земле. 2015. Вып. 25. № 1. С. 79-86.
The article provides an algorithm for recovery of parameters of ash emissions (total volume and its height distribution) during explosive eruptions. The solution for the corresponding inverse task uses a multiple regression approach with minimal a prior information on the eruption dynamics. As an example, we consider a strong explosive event at Bezymianny Volcano, Kamchatka, on 24.12.2006. The estimations showed that the mass distribution for ash emission with heights was partially controlled by the emission of ash material inside the clouds from pyroclastic flows. This peculiarity was revealed as a bimodal distribution of the emission mass with maximums at the mid tropospheric and low stratospheric heights.
Мороз Ю.Ф., Гонтовая Л.И. Глубинное строение района Авачинско-Корякской группы вулканов на Камчатке // Вулканология и сейсмология. 2003. № 4. С. 3-10.
Results are presented from gravity, seismic and electromagnetic studies. Main features of the deep structure of the area have been identified. A multidisciplinary geologic-geophysical model has been developed for the crust beneath Avacha Volcano. The model involves a crustal magma chamber at a depth of about 15-25 km, an intrusion that overlies it, and a peripheral chamber under the volcanic cone at 0-2 km depth, as well as a fluid-saturated zone in the Avacha Graben. We discuss possible geodynamic processes that are going on in the crust at present. Importance is attached to the fluid-containing crustal permeable zone. Recommendations are provided for drilling a deep well in the Avacha Graben area to search for a geothermal field.