Bibliography
Volcano:
Group by:  
Records: 2752
Башарина Л.А. Наблюдения за состоянием фумарол побочных кратеров вулканов Ключевского и Шивелуча в 1948—1949 гг. // Бюллетень вулканологической станции. 1953. № 19. С. 51-59.
Башарина Л.А., Мархинин Е.К. Вулканические газы как производные летучих мантийной магмы // Вулканизм гидротермы и глубины земли (материалы к 3-му Всесоюзному вулканологическому совещанию), Львов, май-июнь 1969 г. Петропавловск-Камчатский: Дальневосточное книжное изд-во. 1969. С. 65
Башарина Л.А. Вулканические газы на различных стадиях активности вулканов // Труды Лаборатории вулканологии АН СССР. 1961. Вып. 19. С. 69-79.
Меняйлов А.А., Набоко С.И., Табаков Н.Д., Башарина Л.А. Извержение Шивелуча летом 1946 г. // Бюллетень вулканологической станции на Камчатке. 1949. № 16. С. 3-11.
Trifonov Grigory, Zhizhin Mikhail, Melnikov Dmitry, Poyda Alexey VIIRS Nightfire Remote Sensing Volcanoes // Procedia Computer Science. 2017. Vol. 119. P. 307-314. doi: 10.1016/j.procs.2017.11.189.
   Annotation
Satellite based remote sensing of active volcanoes has been performed in various forms since 1965. Compared to “on the ground” observations it lets data to be gathered globally at regular pace for long periods of time without the need for local maintenance. Currently existing publicly available volcanoes thermal activity monitoring systems rely on the detection algorithms narrowly specified for volcanoes temperature ranges and operate using the data from previous generation of sensors, which is supported with non-reserved constellation of two satellites. The presented work proposes pipeline (the sequence of actions) based on the clustering of the data received from the Nightfire thermal anomalies detection algorithm, which is not focused on the specific type of infrared sources. Pipeline has been tested on Kamchatka’s region 2016 year dataset and proved to produce sound results corresponding to manual observations.
Башарина Л.А. Исследование газообразных продуктов вулканов Ключевского и Шивелуча // Бюллетень вулканологической станции на Камчатке. 1949. № 16. С. 17-19.
Башарина Л.А. Водные вытяжки пепла и газы пепловой тучи вулкана Безымянного // Бюллетень вулканологической станции. 1958. № 27. С. 38-42.
Фирстов П.П. Особенности акустических и сейсмических волн, сопровождавших извержение вулкана Безымянный в 1983-1985 гг. // Вулканология и сейсмология. 1988. № 2. С. 81-97.
Фирстов П.П. Реконструкция динамики катастрофического извержения вулкана Шивелуч 12 ноября 1964 г. на основании данных о волновых возмущениях в атмосфере и вулканическом дрожании // Вулканология и сейсмология. 1996. № 4. С. 48-63.
   Annotation
Records of microbarographic instruments in the near zone (45 and 113 km) were used for a detailed analysis of wave disturbances in the atmosphere accompanying the November 12, 1964 Shiveluch eruption. It is shown that the wave disturbances due to this major explosive eruption were largely caused by the formation of a convective column; they provide information on the time history of the eruption and the amount of erupted ash. The relation between seismic and acoustic intensities shows that the eruption started with a giant landslide (1.5 km3) giving rise to an ash cloud that produced the first acoustic signal. Volcanic tremor began 12 min after the slide and a second acoustic source began operating. This was related to starting Plinian activity and eruption of pyroclastic flows. The transition from one phase of the eruption to the next was accompanied by increased volcanic tremor and acoustic signal component of frequency > 0.05 Hz, as well as by generation of a long period (greater than 10 min) disturbance having an excess pressure of 50 Pa at 113 km distance. The amount of ash ejected into the atmosphere as inferred from long period disturbance energy is estimated to be 0.35-0.45 km3, which is in satisfactory agreement with geological evidence (0.3 km3).
Башарина Л.А. Фумаролы вулкана Шевелуч в сентябре-декабре 1953 г. // Бюллетень вулканологической станции. 1956. № 24. С. 21-27.