Bibliography
Volcano:
Group by:  
Jump to:     All     Articles     Books     Books sections     Dissertations     Conference Items     Documents     Copyright certificates     Weblinks     Other     
Records: 2404
Books sections
Fedotov S.A. On Deep Structure, Properties of the Upper Mantle, and Volcanism of the Kuril-Kamchatka Island Arc According to Seismic Data / The Crust and Upper Mantle of the Pacific Area. Washington, DC: American Geophysical Union. Washington, DC: American Geophysical Union. 1968. Vol. 12. P. 131-139. doi:10.1029/GM012p0131.    Annotation
The results of detailed seismic investigations during the period 1961 to 1964 are described. Accurate data of focus location for Kamchatka and the Commander Islands are cited. The majority of earthquakes are located in the Pacific focal zone and the others are found in such remarkable tectonic regions as the east Kamchatka ranges, the continental slope of the Commander Islands, etc. The focal zone seismic activity decreases with increasing depth. The seismic activity at a depth of 250 km is 100 times less than the activity at a depth of 0–20 km. Kamchatka earthquake locations in relation to the Kuril-Kamchatka Island arc and deep water trench are approximately the same as those of the south Kuril Island earthquakes. The Kamchatka active volcano belt coincides with the region of earthquakes having focal depths of 100–200 km, especially between 125 and 175 km. S-wave screening in the magma chambers under the volcanoes is observed. The Avacha volcanic cluster magma chamber at a depth of 20–80 km has the form of a column, 25 km in diameter. P-wave velocity in the upper mantle under the Pacific Ocean and between the Aleutian trench and the Kuril-Kamchatka trench is about 8.2 km/sec, and under Kamchatka 7.7 km/sec. Local velocity decreases to basaltic range (Vp = 72 km/sec) in the upper mantle at a depth near 70 km under the east Kamchatka active volcano belt.
Fedotov S.A., Kovalev G.N., Markhinin Y.K., Slezin Y.B., Tsyurupa A.I., Gusev N.A., Andreyev V.I., Leonov V.L., Ovsyannikov A.A. Chronology and features of the Southern Breakthrough of the Great Tolbachik Fissure Eruption, 1975-1976 / The Great Tolbachik Eruption. Cambridge: Cambridge University Press. Cambridge: Cambridge University Press. 1983. P. 11-25.
Gorshkov G.S. Kurile Islands / Catalog of Active Volcanoes of the World and Solfatara Fields. Rome: IAVCEI, 7. 1958. P. 1-99.
Gorshkov G.S. Petrochemical features of volcanism in relation to the types of the Earth's crust / The Crust of the Pacific Basin // Geoph. Monograph. 1962. Vol. 6. P. 110-115.
Gorshkov G.S. Petrochemistry of volcanic rocks in the Kurile Islands arc with some generalizations on volcanism / The Western Pacific: Island Arcs, Marginal Seas, Geochemistry. 1973. P. 459-467.
Igarashi Yohko, Girina O.A., Osiensky Jeffrey, Moore Donald International Coordination in Managing Airborne Ash Hazards: Lessons from the Northern Pacific / Advances in Volcanology. 2017. P. 529-547. doi: 10.1007/11157_2016_45.    Annotation
Airborne volcanic ash is one of the most common, far-travelled, direct hazards associated with explosive volcanic eruptions worldwide. Management of volcanic ash cloud hazards often requires coordinated efforts of meteorological, volcanological, and aviation authorities from multiple countries. These international collaborations during eruptions pose particular challenges due to variable crisis response protocols, uneven agency responsibilities and technical capacities, language differences, and the expense of travel to establish and maintain relationships over the long term. This report introduces some of the recent efforts in enhancing international cooperation and collaboration in the Northern Pacific region.
Korolev S.P., Urmanov I.P., Kamaev A., Girina O.A. Parametric Methods and Algorithms of Volcano Image Processing / Software Engineering Perspectives in Intelligent Systems. Advances in Intelligent Systems and Computing. Cham: Springer. 2020. Vol. 1295. P. 253-263. https://doi.org/10.1007/978-3-030-63319-6_22.    Annotation
A key problem of any video volcano surveillance network is an inconsistent quality and information value of the images obtained. To timely analyze the incoming data, they should be pre-filtered. Additionally, due to the continuous network operation and low shooting intervals, an operative visual analysis of the shots stream is quite difficult and requires the application of various computer algorithms. The article considers the parametric algorithms of image analysis developed by the authors for processing the shots of the volcanoes of Kamchatka. They allow automatically filtering the image flow generated by the surveillance network, highlighting those significant shots that will be further analyzed by volcanologists. A retrospective processing of the full image archive with the methods suggested helps to get a data set, labeled with different classes, for future neural network training.
Lees J., Symons N., Chubarova O., Gorelchik V., Ozerov A. Tomographic Images of Klyuchevskoy Volcano P-Wave Velocity / Volcanism and Subduction: The Kamchatka Region. Geophysical Monograph Series. Washington, D. C.: American Geophysical Union. 2007. Vol. 172. P. 293-302.    Annotation
Three-dimensional structural images of the P-wave velocity below the edifice of the great Klyuchevskoy group of volcanoes in central Kamchatka are derived via tomographic inversion. The structures show a distinct low velocity feature extending from around 20 km depth to 35 km depth, indicating evidence of magma ponding near the Moho discontinuity. The extensive low velocity feature represents, at least to some degree, the source of the large volume of magma currently erupting at the surface near the Klyuchevskoy group.
Ozerov A.Yu. Experimental modeling of the basaltic eruptions mechanism / International Conference Fluxes and Structures in Fluids: Physics of Geospheres – 2009, Selected Papers. 2010. P. 269-278.
Ozerov A.Yu., Firstov P.P., Gavrilov V.A. Periodicities in the dynamics of eruptions of Klyuchevskoi Volcano, Kamchatka / Volcanism and Subduction: The Kamchatka Region. Geophysical Monograph Series. Washington, D. C.: American Geophysical Union. 2007. Vol. 172. P. 283-291.    Annotation
Detailed studies of volcanic tremor envelopes with frequencies ranging from 5.5⋅10-6 to 2.5⋅10-2 Hz (50 hrs - 40 sec), recorded during the Klyuchevskoi volcano eruptions of 1983 and 1984, revealed five major frequencies: 1.1⋅10-2 Hz (T1 = 1 min 34 sec), 2.5⋅10-3 Hz (T2 = 6 min 10 sec), 4.2⋅10-4 Hz (T3 = 40 min), 5.1⋅10-5 Hz (T4 = 5 hrs 30 min), 7.7⋅10-6 Hz (T5 = 36 hrs), as well as superpositions of their harmonics. In the 1993 eruption, fluctuations in the volcanic tremor envelopes have frequencies of TI = 2 hrs 48 min and TII = 6 hrs 12 min, which correspond to periodicities in the dynamics of eruptions identified by visual observations since 1932. The distribution of peak amplitudes has been found to vary in relation to eruption intensity—increasing eruption strength correlates with an increase in the amplitude of low frequency peaks, and vice versa. It is concluded that volcanic tremor allows monitoring of eruption dynamics. Possible reasons for the occurrence of periodicities are discussed, but a comprehensive model for this phenomenon has not yet been developed.



Recommended browsers for viewing this site: Google Chrome, Mozilla Firefox, Opera, Yandex. Using another browser may cause incorrect browsing of webpages.
 
Terms of use of IVS FEB RAS Geoportal materials and services

Copyright © Institute of Volcanology and Seismology FEB RAS, 2010-2021. Terms of use.
No part of the Geoportal and/or Geoportal content can be reproduced in any form whether electronically or otherwise without the prior consent of the copyright holder. You must provide a link to the Geoportal geoportal.kscnet.ru from your own website.
 
©Development&Design: roman@kscnet.ru