Библиография
Вулкан:
Группировать:  
Выбрать:     Все     A     B     C     D     E     F     G     H     I     J     K     L     M     N     O     P     R     S     T     V     W     Y     Z     А     Б     В     Г     Д     Е     Ж     З     И     К     Л     М     Н     О     П     Р     С     Т     У     Ф     Х     Ц     Ч     Ш     Щ     Э     Я     
Записей: 33
Страницы:  1 2 3 4
 F
Fedotov S.A., Markhinin E.K. The Great Tolbachik Fissure Eruption: Geological and Geophysical Data 1975–1976. Cambridge: Cambridge University Press. 1983. 354 p.
   Аннотация
In 1975–1976 a remarkable volcanic eruption took place on the Kamchtka peninsula, part of the Soviet Union's arc of active volcanoes. Dr Fedotov and his colleagues studied the largest basaltic eruption in history, one of the most important volcanic events in the twentieth century. During this prolonged eruption they carried out extensive seismological, geophysical, geodetic and geochemical investigations. The results of this detailed and thorough investigation were collected as a series of papers under the editorship of S. A. Fedotov and collected into this volume, which was originally published by Cambridge in 1983. The result is a classic descriptive work of a major volcanic eruption.
Fedotov S.A., Ozerov A.Yu., Maguskin M.A., Dvigalo V.N., Grib E.N., Ivanov V.V. The 1996-2003 eruptions in the Akademii Nauk Caldera and at the Karymsky volcano, Kamchatka // IUGG-2003 Abstract. 2003. P. A.523
Fedotov S.A., Sugrobov V.M., Utkin I.S., Utkina L.I. On the possibility of using heat stored in the magma chamber of the Avachinsky volcano and the surrounding rock for heat and power supply // Journal of Volcanology and Seismology. 2007. Vol. 1. № 1. P. 28-41. doi:10.1134/S0742046307010022.
   Аннотация
The results of geological and geophysical studies, including recent ones, which make it possible to verify the existence of a liquid magma chamber below the Avachinsky volcano on Kamchatka, and to estimate the chamber depth and approximate dimensions, are analyzed. The heat stored in the host rock heated by the volcanic magma chamber from the time of chamber origination to the present is estimated, taking variable chamber dimensions during the process of evolution into account. The geological-geophysical prerequisites for using the thermal energy of the heated rock which surrounds the magma chamber to supply heat and power to Petropavlovsk-Kamchatskii are analyzed. The creation of an underground geothermal circulation system (fracture heat exchanger) using deep boreholes is proposed.
Fedotov S.A., Tokarev P.I. Earthquakes, properties of the upper mantle, and their connections with volcanism in Kamchatka / The Crust and Upper Mantle of the Pacific Area. // ХV Генеральная ассамблея Международного геодезического и геофизического союза. , Москва. 1971.
Fedotov S.A., Zharinov N.A., Gontovaya L.I. The magmatic system of the Klyuchevskaya group of volcanoes inferred from data on its eruptions, earthquakes, deformation, and deep structure // Journal of Volcanology and Seismology. 2010. Т. 4. № 1. С. 1-33. doi:10.1134/S074204631001001X.
   Аннотация
Abstract-The study of magmatic plumbing systems of volcanoes (roots of volcanoes) is one of the main tasks facing volcanology. One major object of this research is the Klyuchevskaya group of volcanoes (KGV), in Kamchatka, which is the greatest such group that has been found at any island arc and subduction zone. We summarize the comprehensive research that has been conducted there since 1931. Several conspicuous results derived since the 1960s have been reported, emerging from the study of magma sources, eruptions, earthquakes, deformation, and the deep structure for the KGV. Our discussion of these subjects incorporates the data of physical volcanology relating to the mechanism of volcanic activity and data from petrology as to magma generation. The following five parts can be distinguished in the KGV plumbing system and the associated geophysical model: the source of energy and material at the top of the Pacific Benioff zone at a depth of about 160 km, the region of magma ascent in the asthenosphere. the region of magma storage in the crust-mantle layer at depths of 40-25 km,
magma chambers and channelways in the crust, and the bases of volcanic edifices. We discuss and explain the properties of and the relationships between these parts and the mechanisms of volcanic activity and of the KGV plumbing system as they exist today. Methods for calculating magma chambers and conduits, the amount of magma in the system, and its other properties are available.
Felitsyn S.B., Kirianov V.Yu. Areal variability of tephra composition as indicated by bulk silicate analysis data // Volcanology and Seismology. 1990. Vol. 9. № 1. P. 1-20.
Felitsyn S.B., Vaganov P.A., Kirianov V.Yu. Trace Element Distribution in Kamchatkan Ashes from Instrumental Neutron Activation Analysis // Volcanology and Seismology. 1991. Vol. 12. № 2. P. 195-213.
Filatov S., Shablinskii A., Vergasova L., Saprikina O., Bubnova R., Moskaleva S., Belousov Alexander Belomarinaite KNa (SO 4): A new sulfate from 2012–2013 Tolbachik Fissure eruption, Kamchatka Peninsula, Russia // Mineralogical Magazine. 2019. Vol. 83. № 4. P. 569-577. doi: 10.1180/mgm.2018.170.
Filei Andrei, Girina O.A., Sorokin A.A. Retrieval of Volcanic Sulphate Aerosols Optical Parameters from AHI Radiometer Data // Advances in Atmospheric Sciences. 2024. doi: 10.1007/s00376-024-3105-2.
   Аннотация
This paper presents a method for retrieving volcanic sulphate aerosols optical parameters from the AHI radiometer on board the Himawari-8 satellite. The proposed method is based on optical models for various mixtures of the volcanic cloud’s aerosol components, including ash particles, ice crystals, water drops, and sulphate aerosol droplets. The application of multicomponent optical models of various aerosol compositions allowed the optical thickness and mass loading of sulphate aerosol to be estimated in the sulfuric cloud formed after the Karymsky volcano eruption on November 3, 2021. A comprehensive analysis of the brightness temperatures of the sulfuric cloud in the infrared bands was performed, which revealed that the cloud composed a mixture of sulphate aerosol and water droplets. The use of the models of various aerosol composition allows the satellite-based estimation of optical parameters not only for sulphate aerosol but also for the whole aerosol mixture.
Firstov P.P., Maksimov A.P., Girina O.A. Bezymianny (Kamchatka)/ Lava extrusion, pyroclastic flow // SEAN Bulletin. 1986. № 7. P. 12