Bibliography
Volcano:
Group by:  
Jump to:     All     Articles     Books     Books sections     Dissertations     Conference Items     Documents     Copyright certificates     Weblinks     Other     
Records: 2752
Articles
Федотов С.А., Энман В.Б., Магуськин М.А., Левин В.Е., Жаринов Н.А. Внедрение базальтов и образование питающих трещин большого Толбачинского извержения 1975 г. по геодезическим данным // Доклады АН СССР. 1976. Т. 229. № 1. С. 170-173.
Федотов С.А., Энман В.Б., Магуськин М.А., Левин В.Е., Жаринов Н.А., Энман С.В., Бахтиаров В.Ф. Движения земной коры, вызванные Большим трещинным Толбачинским извержением 1975-1976 гг. // Современный вулканизм и связанные с ним геологические, геофизические и геохимические явления (тезисы докладов) . V Всесоюзное вулканологическое совещание. Тбилиси: Мецниереба. 1980. С. 6-7.
Фелицын С.Б., Ваганов П.А., Кирьянов В.Ю. Распределение редких и рассеянных элементов в пеплах вулканов Камчатки по данным инструментального нейтронно-активационного анализа // Вулканология и сейсмология. 1990. № 2. С. 23-35.
Фелицын С.Б., Кирьянов В.Ю. Площадная изменчивость состава тефры некоторых вулканических извержений по данным валового силикатного состава // Вулканология и сейсмология. 1987. № 1. С. 3-14.
Филей А.А., Гирина О.А., Сорокин А.А. Восстановление оптических параметров вулканического H2SO4 по спутниковым данным // Оптика атмосферы и океана. Физика атмосферы. Материалы XXVIII Международного симпозиума [Электронный ресурс]. Томск: Изд-во ИОА СО РАН. 2022. С. B-311. doi: 10.56820/OAOPA.2022.76.43.001.
   Annotation
Работа посвящена методике восстановления оптических параметров вулканического H2SO4 по данным радиометра AHI спутника Himawari-8. Методика основана на использовании оптических моделей для различных смесей аэрозольных компонентов вулканического облака, представленных пеплом, кристаллами льда, каплями воды и каплями H2SO4. Использование многокомпонентных оптических моделей различного аэрозольного состава позволило оценить оптическую толщину и массовое содержание H2SO4 в сернокислом облаке, образованном после извержения вулкана Карымский 3 ноября 2021 г. Был проведен комплексный анализ спектральных характеристик сернокислого облака в коротковолновом и инфракрасном диапазоне длин волн, по результатам которого установлено, что сернокислое облако преимущественно представляет собой смесь капель H2SO4 и воды.
Фирстов П.П. Особенности акустических и сейсмических волн, сопровождавших извержение вулкана Безымянный в 1983-1985 гг. // Вулканология и сейсмология. 1988. № 2. С. 81-97.
Фирстов П.П. Реконструкция динамики катастрофического извержения вулкана Шивелуч 12 ноября 1964 г. на основании данных о волновых возмущениях в атмосфере и вулканическом дрожании // Вулканология и сейсмология. 1996. № 4. С. 48-63.
   Annotation
Records of microbarographic instruments in the near zone (45 and 113 km) were used for a detailed analysis of wave disturbances in the atmosphere accompanying the November 12, 1964 Shiveluch eruption. It is shown that the wave disturbances due to this major explosive eruption were largely caused by the formation of a convective column; they provide information on the time history of the eruption and the amount of erupted ash. The relation between seismic and acoustic intensities shows that the eruption started with a giant landslide (1.5 km3) giving rise to an ash cloud that produced the first acoustic signal. Volcanic tremor began 12 min after the slide and a second acoustic source began operating. This was related to starting Plinian activity and eruption of pyroclastic flows. The transition from one phase of the eruption to the next was accompanied by increased volcanic tremor and acoustic signal component of frequency > 0.05 Hz, as well as by generation of a long period (greater than 10 min) disturbance having an excess pressure of 50 Pa at 113 km distance. The amount of ash ejected into the atmosphere as inferred from long period disturbance energy is estimated to be 0.35-0.45 km3, which is in satisfactory agreement with geological evidence (0.3 km3).
Фирстов П.П. Ударно-волновые и акустические эффекты в атмосфере при вулканических извержениях (обзор) // Вестник КРАУНЦ. Серия: Науки о Земле. 2009. Вып. 14. № 2. С. 100-117.
   Annotation
The paper provides an overview of recent studies related to the shock-wave and acoustic effects in the atmosphere from volcanic eruptions. Brief description is given to the development of a new trend known as Acoustics from Volcanic Eruptions (AVE) and informational content of wave disturbances in the atmosphere regarding the dynamics of eruptions and parameters of explosive process. Wave disturbances in the atmosphere from volcanic eruptions were classified and presented in the paper to explain their unique nature.
Фирстов П.П., Адушкин В.В., Сторчеус А.В. Ударные воздушные волны, зарегистрированные во время Большого трещинного Толбачинского извержения в сентябре 1975 г. // Доклады АН СССР. 1978. Т. 239. № 5. С. 1078-1081.
Фирстов П.П., Акбашев Р.Р., Жаринов Н.А., Максимов А.П., Маневич Т.М., Мельников Д.В. Электризация эруптивных облаков вулкана Шивелуч в зависимости от характера эксплозии // Вулканология и сейсмология. 2019. № 3. С. 49-62. doi: 10.31857/S0205-96142019349-62.
   Annotation
The number of explosive eruptions at Shiveluch Volcano has significantly increased over the past years, which requires close volcanic monitoring using all available techniques. In order to implement a new monitoring technique into integrated methods of volcano monitoring, the authors analyze response to the intensity of the vertical component in the atmospheric electrical field (EZ AEF) during the movement of ash clouds. Two eruptions of different intensity that occurred December 16, 2016 and June 14, 2017 at Shiveluch were selected for study. We used a combination of satellite, seismic, and infrasound data to select signals in the EZ AEF field. Signals with negative polarity that accompanied ashfalls in the EZ AEF dynamics were registered for both eruptions within the closest area (< 50 km). In the former case, the ash cloud was “dry” and thus it caused aerial-electrical structure of the negatively charged cloud. In the latter case, a strong explosion sent into the atmosphere the large volume of ash and volcanic gases (98% in form of vapour) that resulted in the formation of a dipolar aerial-electrical structure caused by eolian differentiation within the closest area. At the distance of more than 100 km we registered a positivegoing signal that is attributive to the aerial-electrical structure of the positively charged type of the cloud.