Bibliography
Volcano:
Group by:  
Jump to:     All     Articles     Books     Books sections     Dissertations     Conference Items     Documents     Copyright certificates     Weblinks     Other     
Records: 2589
Books sections
Churikova T., Gordeychik B., Wörner G. Mantle and fluid sources below Klyuchevskoy-Kamen-Bezymianny line (Kamchatka) / Geofluid-3. Nature and Dynamics of fluids in Subduction Zones. Tokyo, Japan, February 28 - March 3, 2014. Tokyo, Japan: Tokyo Institute of Technology. 2014. P. 72
   Annotation
Kamen volcano is an extinct volcanic complex located in the central part of the Klyuchevskaya group of volcanoes (KGV) between active Klyuchevskoy, Bezymianny, and Ploskie Sopky volcanoes. Kamen volcano was mapped by V.A. Ermakov only in the 1970s. However the modern geochemical studies of Kamen volcano have not been previously carried out and its relationship and petrogenesis in comparison to other active neighbors are unknown. A modern geochemical study of Kamen volcano is needed because it will shed light not only on the history of the volcano itself and its closest neighbors, but also on the history and magmatic evolution of the KGV melts in general. The distance between the summits of Kamen and Klyuchevskoy is only 5 km, the same as between Kamen and Bezymianny. The close relationship in space and time of the KGV and the common zone of seismicity below them suggests a common source and a possible genetic relationship between their magmas. However, the Late-Pleistocene-Holocene lavas of all these neighboring volcanoes are very different: high-Mg and high-Al Ol-Cpx-Pl basalts and basaltic andesites occur at Klyuchevskoy volcano, and Hbl-bearing andesites and dаcites dominate at Bezymianny volcano. The rocks of Ploskie Sopky volcano, situated only 10 km NW of Kamen, are represented by medium-high-K subalkaline lavas.
Clarke Amanda B., Ongaro Tomaso, Belousov Alexander Vulcanian Eruptions / Encyclopedia of Volcanoes. Academic Press: Elsevier. 2015. P. 505-518.
Erlich E.N. Chapter 4 General problems of tectonics and volcanism of island arcs and associated tectonic systems / Quaternary volcanism and tectonics in Kamchatka. Bull. Volcanol.. // Bulletin Volcanologique. 1979. Vol. 42. Vol. 1-4. P. 255-298. doi: 10.1007/BF02597045.
Fedotov S.A. On Deep Structure, Properties of the Upper Mantle, and Volcanism of the Kuril-Kamchatka Island Arc According to Seismic Data / The Crust and Upper Mantle of the Pacific Area. Washington, DC: American Geophysical Union. Washington, DC: American Geophysical Union. 1968. Vol. 12. P. 131-139. doi:10.1029/GM012p0131.
   Annotation
The results of detailed seismic investigations during the period 1961 to 1964 are described. Accurate data of focus location for Kamchatka and the Commander Islands are cited. The majority of earthquakes are located in the Pacific focal zone and the others are found in such remarkable tectonic regions as the east Kamchatka ranges, the continental slope of the Commander Islands, etc. The focal zone seismic activity decreases with increasing depth. The seismic activity at a depth of 250 km is 100 times less than the activity at a depth of 0–20 km. Kamchatka earthquake locations in relation to the Kuril-Kamchatka Island arc and deep water trench are approximately the same as those of the south Kuril Island earthquakes. The Kamchatka active volcano belt coincides with the region of earthquakes having focal depths of 100–200 km, especially between 125 and 175 km. S-wave screening in the magma chambers under the volcanoes is observed. The Avacha volcanic cluster magma chamber at a depth of 20–80 km has the form of a column, 25 km in diameter. P-wave velocity in the upper mantle under the Pacific Ocean and between the Aleutian trench and the Kuril-Kamchatka trench is about 8.2 km/sec, and under Kamchatka 7.7 km/sec. Local velocity decreases to basaltic range (Vp = 72 km/sec) in the upper mantle at a depth near 70 km under the east Kamchatka active volcano belt.
Fedotov S.A., Kovalev G.N., Markhinin Y.K., Slezin Y.B., Tsyurupa A.I., Gusev N.A., Andreyev V.I., Leonov V.L., Ovsyannikov A.A. Chronology and features of the Southern Breakthrough of the Great Tolbachik Fissure Eruption, 1975-1976 / The Great Tolbachik Eruption. Cambridge: Cambridge University Press. Cambridge: Cambridge University Press. 1983. P. 11-25.
Gorshkov G.S. Kurile Islands / Catalog of Active Volcanoes of the World and Solfatara Fields. Rome: IAVCEI, 7. 1958. P. 1-99.
Gorshkov G.S. Petrochemical features of volcanism in relation to the types of the Earth's crust / The Crust of the Pacific Basin // Geoph. Monograph. 1962. Vol. 6. P. 110-115.
Gorshkov G.S. Petrochemistry of volcanic rocks in the Kurile Islands arc with some generalizations on volcanism / The Western Pacific: Island Arcs, Marginal Seas, Geochemistry. 1973. P. 459-467.
Igarashi Yohko, Girina O.A., Osiensky Jeffrey, Moore Donald International Coordination in Managing Airborne Ash Hazards: Lessons from the Northern Pacific / Advances in Volcanology. 2018. P. 529-547. https://doi.org/10.1007/11157_2016_45.
   Annotation
Airborne volcanic ash is one of the most common, far-travelled, direct hazards associated with explosive volcanic eruptions worldwide. Management of volcanic ash cloud hazards often requires coordinated efforts of meteorological, volcanological, and aviation authorities from multiple countries. These international collaborations during eruptions pose particular challenges due to variable crisis response protocols, uneven agency responsibilities and technical capacities, language differences, and the expense of travel to establish and maintain relationships over the long term. This report introduces some of the recent efforts in enhancing international cooperation and collaboration in the Northern Pacific region.
Ivanov A.V., Perepelov A.B., Puzankov M.Yu., Yasnygina T.A., Malykh Yu.M., Rasskazov S.V. Rift- and arc-type basaltic volcanism of the Sredinny Ridge, Kamchatka: case study of the Payalpan volcano-tectonic structure / Metallogeny of the Pacific Northwest: Tectonics, Magmatism and Metallogeny of Active Continental Margins. Vladavostok: Dalnauka. 2004. P. 345-349.
   Annotation
Trace element data for volcanic rocks of the Payalpan volcano-tectonic structure (Sredinny ridge, Kamchatka) allows distinguishing typical island-arc, rift and transitional series of rocks. Island-arc basaltic and differentiated magmas erupted in the Late Miocene and Pliocene. In the Late Pliocene – Early Pleistocene, there was a voluminous event dominated by the basaltic magmas of rift-type series. This event followed by voluminous eruptions of mainly basaltic andesites of transitional series. At the end of the Pleistocene and probably during the Holocene volume of eruptions diminished and composition of magmas shifted towards rift-type basaltic series. Practically in the same area in the Pleistocene and Holocene the Icha volcano produced basaltic andesite to rhyolite magmas of the island-arc and transitional series. Reasons for spatial overlapping and temporal evolution of the island-arc and rift magma types are also discussed.