Bibliography
Volcano:
Group by:  
Jump to:     All     Articles     Books     Books sections     Dissertations     Conference Items     Documents     Copyright certificates     Weblinks     Other     
Records: 2283
Articles
Melekestsev I.V., Braitseva O.A., Ponomareva V.V., Sulerzhitskiy L.D. Holocene catastrophic caldera-forming eruptions of Ksudach volcano, Kamchatka // Volcanology and Seismology. 1996. V. 17. № 4-5. P. 395-422.    Annotation
Four Plinian eruptions of Ksudach have been reconstructed and dated by the carbon-14 method. The eruptions produced three collapse calderas: the KS1 eruption formed Caldera V 1700-1800 years ago, the KS2 and KS3 events produced Caldera IV 6000-6100 years ago, and the KS4 eruption formed Caldera III 8700-8800 years ago. The most violent eruption was the KS1 event. The sizes of the calderas were 4 × 6.5 km (V), 5 × 6 km (IV), and presumably 2-3 km across (III). Juvenile material was erupted in a rhythmic manner. The composition of the products was dominated by andesite (KS2 and KS4), dacite and rhyodacite (KS3), and rhyodacite (KS1). It is assumed that all caldera-forming eruptions were triggered by the injection of a new portion of high-temperature basic magma and its mixing with the cooling acid magma of the preexisting source. -from Journal summary

Реконструированы и датированы 14С-методом четыре плинианских извержения вулкана Ксудач, сформировавших три кальдеры обрушения: KCi и кальдеру V - 1700-1800 л. н.; КС2 + КС3 и кальдеру IV - 6000-6100 л. н.; КС4 и кальдеру III 8700-8800 л. н. Самым мощным было извержение KCi: 18-19 км3 пирокластики, высота эруптивной колонны до 23 км. Объем продуктов извержений КС2 + КС3 - 10-11 км3, КС4 - не менее 1,5-1,7 км3. Размеры кальдер: V - 4 X 6,5 км, IV - 5x6 км, поперечь III - предположительно 2-3 км. Вынос ювенильной пирокластики в ходе извержений было ритмичным. Каждый ритм начинался выбросом тефры, а завершался формированием пирокластических потоков. Состав продуктов варьировал от андезитов до риодацитов: КС2 и КС4 - преимущественно андезиты, КС3 - дациты и риодациты, KCi - риодацит. Предполагается, что "спусковой механизм" для начала всех кальдерообразующих извержений - внедрение свежей сильно нагретой магмы основного состава и смешение ее с остывающей кислой магмой существовавшего ранее очага. В соответствии со своими масштабами извержения должны были оказать влияние на климат и озоновый слой 3емли и найти отражение в виде кислотных пиков в Гренландском ледниковом щите.
Melekestsev I.V., Braitseva O.A., Sulerzhitskii L.D., Ogorodov N.V., Kozhemiaka N.N., Egorova I.A., Lupikina E.G. Age of Volcanoes in the Kurille-Kamchatka Zone // International Association of Volcanology and Chemistry of the Earth`s Interior. Sumposium on Volcanoes &Their Roots. Oxford: 1969. P. 138-139.
Melekestsev I.V., Dirksen O.V., Girina O.A. A giant landslide-explosion circue and debris avalanche at Bakening volcano, Kamchatka // Journal of Volcanology and Seismology. 1999. V. 20. № 3. P. 265-279.    Annotation
This study revealed that the giant cirque of Bakening Volcano had been produced by its eruption ca. 8000-8500 carbon-14 year ago. The eruption is supposed to have been heralded by a large earthquake (M > 7) resulting in the collapse and slide of the SE sector of the cone. The landslide unroofed the hydrothermal system and triggered an explosion which was followed by an ash-and-block pyroclastic flow. A rockslide avalanche rolled down into the valley of the Srednyaya Avacha River and travelled as far as 10-11 km along it. The avalanche deposited its debris material over an area of 18-20 km2 measuring 0.4-0.5 km3 in volume. These deposits dammed the river, produced two lakes (Bezymyannoe and Verkhneavacha), and gave birth to a large lahar which traveled along the valley much farther.
Melekestsev I.V., Dvigalo V.N., Kirianov V.Yu., Kurbatov A.V., Nesmachnyi I.A. Ebeko volcano, Kuril Islands: eruptive history and potential volcanic hazards. Part I // Journal of Volcanology and Seismology. 1994. V. 15. № 3. P. 339-354.    Annotation
The eruptive history of Ebeko Volcano is described since its origin about 2400 years ago until the beginning of the 17th century. Six stages of increased activity each lasting 200-300 years were separated by repose periods of the same duration. The eruption of juvenile material (lava and pyroclastics) took place at the first stage only (420-200 B.C.). All eruptions that followed were phreatic events of varying vigor. It is shown that, except for the first eruptive stage, the main volcanic hazard for the Ebeko area and the town of Severo-Kurilsk near by comes from large lahars and tephra fallout. -from Journal summary
Melekestsev I.V., Dvigalo V.N., Kirianov V.Yu., Kurbatov A.V., Nesmachnyi I.A. Ebeko volcano, Kuril Islands: eruptive history and potential volcanic hazards. Part II // Journal of Volcanology and Seismology. 1994. V. 15. № 4. P. 411-430.    Annotation
Consequences of the Ebeko eruptions in the 17th-20th centuries have been reconstructed, using historical records, tephrochronological study, and air photographs. It is shown that all eruptions were phreatic and phreatomagmatic with a heat source of a strongly heated dike-sill complex of more than 1 km3 volume. It is supposed that the main potential hazard for Severo-Kurilsk city and adjacent area may be connected with large-volume lahar flows along the Kuzminka and Matrosskaya Rivers, which are sourced on Ebeko Volcano. Lesser hazard is expected from ashfalls of this and other volcanoes of the north Kurils and south Kamchatka. -from Journal summary

По историческим сведениям, дополненным тефрохронологическими исследованиями и материалами аэрофотосъемок I960, 1987, 1988, 1990 гг. района в. Эбеко, детально восстановлены последствия его извержений XVII-XX вв. Показано, что все извержения были фреатическими и условно фреатомагматическими с источником теплового питания в виде сильно нагретого дайково-силлового комплекса объемом более 1 км . приуроченного к зоне растяжения ССВ (аз. 25°) простирания, вдоль которого расположены вулканы хр. Вернадского на о-в Парамушир. Предполагается, что в будущем главная опасность для г. Северо-Курильска и прилежащих участков связана с прохождением большеобъемных лахаров по рекам Кузьминка и Матросская, начинающихся на в. Эбеко, в меньшей степени - с пеплопадами этого и других вулканов Северных Курил и Южной Камчатки. Доказывается, что серьезная угроза городу может возникнуть при будущем извержении в. Эбеко типа его извержения 1934-1935 гг. Рекомендованы меры для защиты города.
Melekestsev I.V., Kartasheva E.V., Kirsanova T.P., Kuzmina A.A. Water Contaminated Fresh Tephra as a Natural Hazard Factor: the 2008-2009 Eruption of Koryakskii Volcano, Kamchatka // Journal of Volcanology and Seismology. 2011. V. 5. № 1. P. 17-30. doi: 10.1134/S0742046311010064.    Annotation
Abstract-This study is the first to show, using data from the eruption of Koryakskii Volcano, Kamchatka that began in December 2008 and continued through 2009 that the water in permanent and temporary streams that start on the slopes of the volcanic cone and in temporary lakes when contaminated with fresh tephra is a specific hazard factor related to long-continued hydrothemial-phreatic eruptions on that volcano. This water is characterized by increased acidity (pH 4.1-4.35) and large amounts (up to 50-100 cm /liter) of solid suspension and is unfit for drinking and irrigation. When combined with tephra, it probably produced mass destruction of a number of animals who lived on the slopes and at the base of the volcano. The water contaminated with tephra is an important component of the atmospheric mud tlows occurring on Koryakskii Volcano; for several future years it will be a potential source for enhancing the acidity of ground water in the volcanic edifice.
Melekestsev I.V., Sulerzhitskiy L.D., Bazanova L.I., Braitseva O.A., Florenskaya N.I. Holocene catastrophic lahars at Avacha and Koryakskiy volcanoes in Kamchatka // Volcanology and Seismology. 1996. V. 17. № 4-5. P. 561-570.    Annotation
Remnants of five catastrophic lahars have been discovered, described, and dated by the carbon-14 method. They occurred during eruptions of Avacha (violent explosions with voluminous juvenile pyroclastics) and Koryakskiy (large fissure lava flows): 3500 to 3200 14C years ago or 1900-1500 years B.C. These lahars were much higher in vigor, hazard, and effect on the environment than the lahars generated by the historic eruptions of these volcanoes. -from Journal summary
Melekestsev Ivan V., Ponomareva Vera V., Volynets Oleg N. Kizimen volcano, Kamchatka — A future Mount St. Helens? // Journal of Volcanology and Geothermal Research. 1995. V. 65. № 3-4. P. 205-226.    Annotation
We studied the tectonic setting, morphology, geologic structure, history of eruptive activity and evolution of the composition of the erupted material of Kizimen volcano, Kamchatka, from the moment of its origination 11–12 thousand years ago to the present time. Four cycles, each 2–3.5 thousand years long, were distinguished that characterize the activity of the volcano. All of the largest eruptions were dated, and their parameters determined. We also estimated the volume and the mass of the erupted products, the volcanic intensity of eruption of material during periods of high activity, and the amount of material the volcano ejected at different stages of its formation. It has been shown that the evolution of the composition of the rocks erupted (from dacite to basaltic andesite) takes place as a result of mixing of dacitic and basaltic magma. It is suggested that future eruptions that may take place at Kizimen may be similar to those at Bandai (1888) and Mount St. Helens (1980) volcanoes.


Melnik O., Lyakhovsky V., Shapiro Nikolay M., Galina N., Bergal-Kuvikas Olga Deep long period volcanic earthquakes generated by degassing of volatile-rich basaltic magmas // Nature Communication. 2020. V. 11. № 3918. doi: 10.1038/s41467-020-17759-4.    Annotation
Deep long-period (DLP) earthquakes observed beneath active volcanoes are sometimes considered as precursors to eruptions. Their origin remains, however, unclear. Here, we present a possible DLP generating mechanism related to the rapid growth of gas bubbles in response to the slow decompression of over-saturated magma. For certain values of the gas and bubble content, the elastic deformation of surrounding rocks forced by the expanding bubbly magma can be fast enough to generate seismic waves. We show that amplitudes and frequencies of DLP earthquakes observed beneath the Klyuchevskoy volcano (Kamchatka, Russia) can be predicted by our model when considering pressure changes of ~107 Pa in a volume of ~103–104 m3 and realistic magma compositions. Our results show importance of the deep degassing in the generation of volcanic seismicity and suggest that the DLP swarms beneath active volcanoes might be related to the pulses of volatile-rich basaltic magmas rising from the mantle.
Melnikov D.V., Volynets Anna Spatial and morphometric analyses of Anaun monogenetic volcanic field (Sredinny Range, Kamchatka) // 7th International Maar Conference, Olot, Catalonia, Spain. 2018. P. 61    Annotation
Monogenetic volcanic fields are frequently located in the faulted area and in clusters which are associated with the particular geometry of the magmatic chambers and structures of the magma plumbing system in the crust. The method of cluster analyses of the spatial distribution and morphometric characteristics of the cinder cones was used in our research of the conditions of origin and evolution of one of the largest monogenetic fields in Kamchat-ka back-arc-the Anaunsky Dol, or Anaun MVF. Kamchat-ka subduction system is located at the northwestern part of the Pacific at the convergent boundary of the Okhotsk and Pacific plates. Today, Sredinny Range represents its back-arc part and is characterized by the wide distribution of the monogenetic volcanic fields: it has more than 1000 cinder cones, which deposits cover the area of about 8500 km2 (Laverov, 2005; Ogorodov et al., 1972) (Fig. 1). Sredinny Range has a complex structure with several volcanic provinces with different geological history and variable composition of products. Anaun monogenetic volcanic field occupies one of the lowest sections of the whole Sredinny Range. The youngest volcanism in this area (according to the geological map, it was formed in Quaternary times, although our geochemical research and isotopic dating shows its earlier age) is confined to the lowered block of basement rocks. Shield volcanoes, volcanic ridges, cinder and lava cones are located on a low-laying volcanic dale. We made an attempt to make a spatial analysis of distribution of the volcanic edifices and to quantitatively estimate the structural control of the magma plumbing channels. Based on a digital relief model (DEM SRTM, spatial resolution 30 m) we distinguished more than 100 morphometrically expressed cinder cones. For them, using semi-automatic mode, we estimated the morphometric characteristics: height, diameter of the basement, height/basement ratio, angle of the slope, volume of the edifice. With time, cinder cones change their shape due to the erosion processes. Therefore, finally the edifice height is decreased while the basement diameter increased. Determination of the morphometric parameters allowed us to compose a relative age scale for the cinder cones located in Anaun monogenetic volcanic field. Spatial analysis has shown that cones tend to form series of clusters, which are associated with the systems of lineaments. Statistically significant patterns in the cinder cones distribution were then compared with the strike of lineaments to estimate possible location of the magma feeding channels.



Recommended browsers for viewing this site: Google Chrome, Mozilla Firefox, Opera, Yandex. Using another browser may cause incorrect browsing of webpages.
 
Terms of use of IVS FEB RAS Geoportal materials and services

Copyright © Institute of Volcanology and Seismology FEB RAS, 2010-2020. Terms of use.
No part of the Geoportal and/or Geoportal content can be reproduced in any form whether electronically or otherwise without the prior consent of the copyright holder. You must provide a link to the Geoportal geoportal.kscnet.ru from your own website.
 
©Development&Design: roman@kscnet.ru