Group by:  
Jump to:     All     A     B     C     D     E     F     G     H     I     J     K     L     M     N     O     P     R     S     T     V     W     Y     Z     А     Б     В     Г     Д     Е     Ж     З     И     К     Л     М     Н     О     П     Р     С     Т     У     Ф     Х     Ц     Ч     Ш     Щ     Э     Я     
Records: 2604
Gorbach N.V., Philosofova T.M, Portnyagin M.V. Amphibole record of 1964 plinian and following dome-forming eruptions of Shiveluch volcano, Kamchatka // Journal of Volcanology and Geothermal Research. 2020. Vol. 407. № 107108. doi: 10.1016/j.jvolgeores.2020.107108.
Shiveluch is one of the most active explosive volcanoes worldwide. During the last рlinian eruption in 1964 and the following (1980-current time) dome-forming eruptions Shiveluch has produced andesites and dacites (SiO2~60-64 wt.%) containing variably zoned, compositionally and texturally diverse amphibole phenocrysts. In this work, we attempt to decode the complex zoning of the amphibole crystals in the 55-year series of pumice, dome rocks and mafic enclaves in order to reconstruct the most recent evolution of the volcano plumbing system.
The amphibole zoning in Shiveluch andesites reveals correlation with the style and date of eruption. High-Al cores mantled by low-Al rims in amphiboles from the 1964 plinian eruption record a drastic decrease of pressure and rapid magma ascent from the lower crust to the shallow magma chamber. Typically unzoned and often opacitized low-Al crystals from the early dome-building episodes in 1980-1981 and 1993-1995 reflect magma crystallization in the shallow magma chamber. Complexly zoned amphiboles from andesites erupted in 2000s indicate replenishment of the shallow magma chamber with mafic magma and syn-eruptive mixing processes. Amphibole-based barometric calculations obtained by different approaches indicate that the Shiveluch plumbing system is complex and comprises two, mafic and silicic magma storage zones at ~15-20 km and ~5-6 km depths. We suggest that both episodes of the plinian eruption in 1964 and the extensive dome growth in 2001-2016 were driven by influx of mafic magma in the shallow storage zone beneath Shiveluch. The mafic replenishment likely preceded the 1964 plinian eruption and repeatedly occurred during the period of extensive dome growth in 2001-2016. The variable styles of the recent Shiveluch eruptions may be controlled by the relative volume of the mafic recharges and their thermal and viscosity effects on the efficiency of magma mixing.
Gorbach N.V., Plechova A.A. The lava field in the center of Dzendzur-Zhupanovsky volcanic group, Eastern Kamchatka // Abstract volume of the 8th International Maar Conference, Petropavlovsk-Kamchatsky, Russia, August 24-30, 2020. Petropavlovsk-Kamchatsky: IVS FEB RAS. 2020. P. 58-59.
Gorbach N.V., Plechova A.A., Manevich T.M, Portnyagin M.V., Philosofova T.M, Samoilenko S.B. The Composition of Volcanic Ash and the Dynamics of the 2013–2016 Zhupanovsky Volcano Eruption // Journal of Volcanology and Seismology. 2018. Vol. 12. № 3. P. 155-171. doi: DOI: 10.1134/S0742046318030028.
This paper presents the results from a study of ash compositions that were erupted in 2013–2016.
The juvenile component has been identified in the ejecta using data on the morphology and textural features of ash particles and the composition of volcanic glasses. The data set suggests that the activity of the volcano was phreatomagmatic.
Gorbach N.V., Ponomareva V.V., Pendea I. Florin, Portnyagin M.V. Small but important: new data about activity and composition of Zarechny volcano (Central Kamchatka depression) // 10th Biennual workshop on Japan-Kamchatka-Alaska subduction processes (JKASP-2018). Petropavlovsk-Kamchatsky, Russia, August 20-26. 2018. P. 83-85.
Gorbach Natalia, Portnyagin Maxim, Hauff Folkmar Sr-Nd isotopic composition of Shiveluch volcanic massif, Kamchatka // 8-th Biennial Workshop on Japan-Kamchatka-Alaska Subduction Processes, JKASP 2014. 22-26 September, 2014, Sapporo, Japan. 2014.
Gorbach Natalia, Portnyagin Maxim, Tembrel Igor Volcanic structure and composition of Old Shiveluch volcano, Kamchatka // Journal of Volcanology and Geothermal Research. 2013. Vol. 263. P. 193-208. doi:10.1016/j.jvolgeores.2012.12.012.
Gordeev E.I., Girina O.A. Volcanoes and their hazard to aviation // Herald of the Russian Academy of Sciences. 2014. Vol. 84. № 1. P. 1-8.
In March 2013, the Kamchatkan Volcanic Eruption Response Team (KVERT) celebrated the 20th anniversary of its activity. This team, which was created by the joint efforts of Russian and American scientists, analyzes on a daily basis the data supplied by the complex (seismic, video, visual, and satellite) monitoring system of volcanoes of Kamchatka and the Northern Kuril Islands to notify airline companies and all interested organizations about potential hazards.
Gordeev E.I., Girina O.A., Gorbach N.V., Manevich A.G., Melnikov D.V., Anikin L.P., Manevich T.M, Dubrovskaya I. K., Chirkov S.A., Kartashova E.V. First Historical Eruption of Kambalny Volcano // Doklady Earth Sciences. 2018. Vol. 482. P. 1257-1259. doi: 10.1134/S1028334X18100045.
The first historical eruption of Kambalny volcano began on March 24, 2017 with the powerful ash emission from the summit crater reaching as high as 6 km above sea level. The explosive activity continued without interruption from March 24 to March 30. The most powerful ash emission was registered on March 25–26, when the ash plume drifted several thousand kilometers SW, S, and SE from the volcano. On April 2 and April 9, after several calm days, powerful ash explosions occurred generating ash plumes up to 7 km high. The area of the land and sea over which the ash plume drifted during the day of March 25, was 650000 km2; the area of the ash accumulation on the land that was formed from March 24 to April 9, exceeded 1500 km2. These parameters were measured using the satellite-based data in the VolSatView information system. Domination of the silty fraction and the presence of secondary minerals (pyrite, gypsum, sulfur, and others) in the ash point to the phreatic character of the volcanic eruption.
Gordeev E.I., Girina O.A., Lupyan E.A., Sorokin A.A., Kramareva L.S., Efremov V.Yu., Kashnitskii A.V., Uvarov I.A., Burtsev M.A., Romanova I.M., Mel’nikov D.V., Manevich A.G., Korolev S.P., Verkhoturov A.L. The VolSatView information system for Monitoring the Volcanic Activity in Kamchatka and on the Kuril Islands // Journal of Volcanology and Seismology. 2016. Vol. 10. № 6. P. 382-394.
Kamchatka and the Kuril Islands are home to 36 active volcanoes with yearly explosive eruptions that eject ash to heights of 8 to 15 km above sea level, posing hazards to jet planes. In order to reduce the risk of planes colliding with ash clouds in the north Pacific, the KVERT team affiliated with the Institute of Volcanology and Seismology of the Far East Branch of the Russian Academy of Sciences (IV&S FEB RAS) has conducted daily satellite-based monitoring of Kamchatka volcanoes since 2002. Specialists at the IV&S FEB RAS, Space Research Institute of the Russian Academy of Sciences (SRI RAS), the Computing Center of the Far East Branch of the Russian Academy of Sciences (CC FEB RAS), and the Far East Planeta Center of Space Hydrometeorology Research (FEPC SHR) have developed, introduced into practice, and were continuing to refine the VolSatView information system for Monitoring of Volcanic Activity in Kamchatka and on the Kuril Islands during the 2011–2015 period. This system enables integrated processing of various satellite data, as well as of weather and land-based information for continuous monitoring and investigation of volcanic activity in the Kuril–Kamchatka region. No other information system worldwide offers the abilities that the Vol-SatView has for studies of volcanoes. This paper shows the main abilities of the application of VolSatView for routine monitoring and retrospective analysis of volcanic activity in Kamchatka and on the Kuril Islands.
Gordeev E.I., Girina O.A., Manevich A.G., Melnikov D.V., Nuzhdaev A.A. 2015-2016 Activity of Kamchatkan and Northern Kuriles Volcanoes (Russia) and Danger to Aviation // 9th Biennial Workshop on Japan-Kamchatka-Alaska Subduction Processes (JKASP 2016). Fairbanks, Alaska: UAF. 2016. P. 93-94.