Group by:  
Jump to:     All     Articles     Books     Books sections     Dissertations     Conference Items     Documents     Copyright certificates     Weblinks     Other     
Records: 1776
Menyailov I.A., Nikitina L.P., Shapar V.N. Results of geochemical monitoring of the activity of Ebeko volcano (Kurile Islands) used for eruption prediction // Journal of Geodynamics. 1985. Vol. 3. № 3-4. P. 259 - 274. doi: 10.1016/0264-3707(85)90038-9.    Annotation
The monitoring of the state of active volcanoes, carried out using different parameters, including geochemical, is very important for studies of deep processes and geodynamics. All changes which occur within the crater before eruptions reflect the magma activation and depend on the deep structure of volcano. This paper gives the results of prolonged monitoring of Ebeko volcano, located in the contact zone between the oceanic and continental plates (the Kurile Island Arc). The geochemical method has been used as the basis for eruption prediction because the increase in the activity of the Ebeko in the period from 1963 to 1967 that ended in a phreatic eruption was not preceded by seismic preparation. Investigations carried out at Ebeko volcano give evidence that change of all the chosen geochemical parameters is a prognostic indicator of a forthcoming eruption. This change depends on the type of eruption, and the deep structure and hydrodynamic regime of the volcano.
Miller T.P., Kirianov V.Yu. Volcanic Ash Hazard along the North Pacific (NOPAC) Air Routs: Kurile Islands - Kamchatka - Alaska // Proc. of the 95 International workshop on Volcanoes Commemorating the 50-th Anniversary of the Mt. Shova-Shinzan: Short papers and Abstracts. 1995.
Mironov N.L., Portnyagin M.V. H2O and CO2 in parental magmas of Kliuchevskoi volcano inferred from study of melt and fluid inclusions in olivine // Russian Geology and Geophysics. 2011. Vol. 52. № 11. P. 1353 - 1367. doi: 10.1016/j.rgg.2011.10.007.    Annotation
This paper reports new FTIR data on the H2O and CO2 concentrations in glasses of 26 naturally quenched and experimentally partially homogenized melt inclusions in olivine (Fo85–91) phenocrysts from rocks of the Kliuchevskoi volcano. Measured H2O concentrations in the inclusions range from 0.02 to 4 wt.%. The wide variations in the H2O content of the inclusions, which do not correlate with the host olivine composition and contents of major elements in the melts, are explained by the H2O escape from inclusions via diffusion through the host olivine during the magma eruption and the following cooling. The largest H2O loss is characteristic of inclusions from lava samples which cooled slowly after eruption. The minimal H2O loss is observed for inclusions from rapidly quenched pyroclastic rocks. Parental magmas of the Kliuchevskoi volcano are estimated to contain 3.5 wt.% H2O. The new data imply a 40 °C lower mantle temperatures than that estimated earlier for the Kliuchevskoi primary melts. The concentrations of CO2 in glasses range from <0.01 to 0.13 wt.% and do not correlate with the type of studied inclusions and their composition. The calculated pressures of melt equilibria with H2O–CO2 fluid inside the inclusions are lower than 270 MPa. They are significantly lower than a pressure of 500 MPa calculated from the density (~0.8 g/cm3) of cogenetic fluid inclusions in high-Fo olivine. The significant pressure drop inside the melt inclusions after their trapping in olivine might be due to the H2O loss and redistribution of CO2 from melt to daughter fluid phase. Compared with melt inclusions, cogenetic fluid inclusions provide independent information about the crystallization pressures of olivine and initial CO2 content in the Kliuchevskoi magma, which were estimated to be at least 500 MPa and 0.35 wt.%, respectively. The maximum CO2 concentrations in the primary Kliuchevskoi melts are estimated at 0.8–0.9 wt.%. The decompression crystallization of the Kliuchevskoi magmas starts at depths of 30–40 km and proceeds with a continuous decrease in CO2 content and an increase (up to 6–7 wt.%) and then a decrease (at <300 MPa) in H2O content in melts, which explains the origin of the whole spectrum of rocks and melt inclusions of the Kliuchevskoi volcano.
Muravyev Y.D., Fedotov S.A., Budnikov V.A., Ozerov A.Yu., Maguskin M.A., Dvigalo V.N., Andreev V.I., Ivanov V.V., Kartasheva L.A., Markov I.A. Activity in the Karymsky Center in 1996: Summit Eruption at Karymsky and Phreatomagmatic Eruption in the Akademii Nauk Caldera // Volcanology and Seismology. 1998. Vol. 19. № 5. P. 567-604.    Annotation
Data are presented from studies of volcanoes in the Karymsky long-living volcanic center, Kamchatka in 1996. We examine the dynamics and rock composition for eruptions that started simultaneously on Karymsky Volcano and in the Akademia Nauk caldera. The effusive-explosive eruption of Karymsky Volcano was resumed after a 14-year repose period, producing about 30 million tons of andesite-dacite discharges through the summit vent. Long-continued eruptive activity of that volcano is supposed to go on during the near future. Simultaneously with this activity, typical of Karymsky Volcano, a subaquaceous explosive eruption was observed in the lake that occupies the Akademia Nauk caldera 6 km south of the volcano for the first time in Kamchatka during the historical period. An edifice arose in the northern part of Lake Karymsky during 18 hours of this eruption consisting of basaltic and basaltic andesite pyroclastic material surrounding a crater of diameter 650 m. The amount of erupted pyroclastic material is estimated as 0.04 km3, the total weight being over 70 million tons. A discussion is provided of the impact of these eruptions on the environment; we describe renewed hydrothermal activity and the formation of a new group of hot springs in the Akademia Nauk caldera, and estimate the possibility of breakthrough floods from Lake Karymsky etc.

Представлены материалы исследований деятельности вулканов Карымского долгоживущего вулканического центра на Камчатке в 1996 г. Рассмотрены особенности динамики и вещественный состав пород одновременно начавшихся извержений вулкана Карымский и в кальдере Академии Наук. Эффузивно-эксплозивное извержение Карымского вулкана возобновилось после 14-летнего периода покоя и в течение года поставило через вершинный кратер -30 млн.т вещества андезитодацитового состава. Предполагается длительная эруптивная активность этого вулкана в ближайшие годы. Одновременно с типичной для Карымского вулкана активностью в 6 км южнее впервые на Камчатке в историческое время наблюдалось субаквальное эксплозивное извержение в озере, занимающем кальдеру Академии Наук. За 18ч извержения в северной части Карымского озера выросла постройка из пирокластического материала базальтового, андезитобазальтового состава с кратером диаметром 650 м. Объем извергнутого пирокластического материала оценивается в 0.04 км3, общий вес >70 млн.т. Обсуждены последствия извержений для окружающей среды, описаны оживление гидротермальной деятельности и образование новой группы горячих источников в кальдере Академии Наук, сделаны оценки прорывных паводков из Карымского озера и т.п.
Muravyev Y.D., Salamatin A.N. Mass balance and thermal regime of a crater glacier at Ushkovskii volcano // Volcanology and Seismology. 1990. Vol. 11. № 3. P. 411-424.    Annotation
A thermal model has been constructed for a steady-state glacier of Ushkovskii Volcano. Analysis of ice mass balance components has revealed elevated heat flow (mean valce 10 W/m2) in the summit crater wich has remained nearly constant over the last 40 years. The measured accumulation rate and temperature distribution in the snow and firn body in the middle of the Gorshkov crater suggest the existence of a considerable uplift (a small embedded crater) overlain by the glaciers. The formulas proposed in this paper can be used to evaluate critical state parameters for unsteady ice masses on the slopes of Klyuchevskoi Volcano.

Построена теплофизическая модель стационарного состояния ледника в активном кратере Ушковского вулкана. Анализ составляющих баланса массы льда показал повышенный геотермический поток (среднее значение 10 Вт/м¤) в пределах вершинного конуса и слабую его изменчивость за последние 40 лет. По измеренной скорости аккумуляции и распределению температуры в снежнофирновой скорости аккумуляции и распределению температуры в снежно-фирновой толще в центре кратера Горшкова предполагается существование значительного поднятия (вложенного малого кратера), перекрытого ледником.
Полученные расчетные формулы помогут оценить параметры критических состояний нестационарных ледяных масс на склонах Ключевского вулкана.
Muravyev Y.D., Shiraiwa T. 400 years of climatic change in Kamchatka Peninsula, Russia: paleoglaciologic, tree-ring and ice-core evidance // Proceedings International Workshop. Matsuyama, Japan, 2002. 2002. P. 76-91.
Nakagawa Mitsuhiro, Ishizuka Yoshihiro, Kudo Takashi, Yoshimoto Mitsuhiro, Hirose Wataru, Ishizaki Yoshio, Gouchi Nobuo, Katsui Yoshio, Solovyow Alexander W., Steinberg Genrikh S., Abdurakhmanov Arslan I. Tyatya Volcano, southwestern Kuril arc: Recent eruptive activity inferred from widespread tephra // The Island Arc. 2002. Vol. 11. № 4. P. 236-254. doi:10.1046/j.1440-1738.2002.00368.x.    Annotation
Tyatya Volcano, situated in Kunashir Island at the southwestern end of Kuril Islands, is a large composite stratovolcano and one of the most active volcanoes in the Kuril arc. The volcanic edifice can be divided into the old and the young ones, which are composed of rocks of distinct magma types, low‐ and medium‐K series, respectively. The young volcano has a summit caldera with a central cone. Recent eruptions have occurred at the central cone and at the flank vents of the young volcano. We found several distal ash layers at the volcano and identified their ages and sources, that is, tephras of ad 1856, ad 1739, ad 1694 and ca 1 Ka derived from three volcanoes of Hokkaido, Japan, and caad 969 from Baitoushan Volcano of China/North Korea. These could provide good time markers to reveal the eruptive history of the central cone, which had continued intermittently with Strombolian eruptions and lava flow effusions since before 1 Ka. Relatively explosive eruptions have occurred three times at the cone during the past 1000 years. We revealed that, topographically, the youngest lava flows from the cone are covered not by the tephra of ad 1739 but by that of ad 1856. This evidence, together with a report of dense smoke rising from the summit in ad 1812, suggests that the latest major eruption with lava effusion from the central cone occurred in this year. In 1973, after a long period of dormancy, short‐lived phreatomagmatic eruptions began to occur from fissure vents at the northern flank of the young volcano. This was followed by large eruptions of Strombolian to sub‐Plinian types occurring from several craters at the southern flank. The 1973 activity is evaluated as Volcanic Explosivity Index = 4 (approximately 0.2 km3), the largest eruption during the 20th century in the southwestern Kuril arc. The rocks of the central cone are strongly porphyritic basalt and basaltic andesite, whereas the 1973 scoria is aphyric basalt, suggesting that magma feeding systems are definitely different between the summit and flank eruptions.
Neal C.A., Girina O.A., Senyukov S.L., Rybin A.V., Osiensky J., Hall T., Nelson K., Izbekov P. Eruption warning systems for aviation in Russia: a 2007 status report // 4th International Workshop on Volcanic Ash. Natural Hazards. New Zealand. 2007. 2007. P. 1-7.
Neal C.A., Girina O.A., Senyukov S.L., Rybin A.V., Osiensky J., Izbekov P., Ferguson G. Russian eruption warning systems for aviation // Materials of ISTC International Workshop “Worldwide early warning system of volcanic activities and mitigation of the global/regional consequences of volcanic eruptions”, Moscow, Russia, July 8-9, 2010. Moscow: ISTC. 2011. P. 29-47.
Neal C.A., Girina O.A., Senyukov S.L., Rybin A.V., Osiensky J., Izbekov P., Ferguson G. Russian eruption warning systems for aviation // Natural Hazards. 2009. Vol. 51. № 2. P. 245-262. doi: 10.1007/s11069-009-9347-6.    Annotation
More than 65 potentially active volcanoes on the Kamchatka Peninsula and the Kurile Islands pose a substantial threat to aircraft on the Northern Pacific (NOPAC), Russian Trans-East (RTE), and Pacific Organized Track System (PACOTS) air routes. The Kamchatka Volcanic Eruption Response Team (KVERT) monitors and reports on volcanic hazards to aviation for Kamchatka and the north Kuriles. KVERT scientists utilize real-time seismic data, daily satellite views of the region, real-time video, and pilot and field reports of activity to track and alert the aviation industry of hazardous activity. Most Kurile Island volcanoes are monitored by the Sakhalin Volcanic Eruption Response Team (SVERT) based in Yuzhno-Sakhalinsk. SVERT uses daily moderate resolution imaging spectroradiometer (MODIS) satellite images to look for volcanic activity along this 1,250-km chain of islands. Neither operation is staffed 24 h per day. In addition, the vast majority of Russian volcanoes are not monitored seismically in real-time. Other challenges include multiple time-zones and language differences that hamper communication among volcanologists and meteorologists in the US, Japan, and Russia who share the responsibility to issue official warnings. Rapid, consistent verification of explosive eruptions and determination of cloud heights remain significant technical challenges. Despite these difficulties, in more than a decade of frequent eruptive activity in Kamchatka and the northern Kuriles, no damaging encounters with volcanic ash from Russian eruptions have been recorded.

Recommended browsers for viewing this site: Google Chrome, Mozilla Firefox, Opera, Yandex. Using another browser may cause incorrect browsing of webpages.
Terms of use of IVS FEB RAS Geoportal materials and services

Copyright © Institute of Volcanology and Seismology FEB RAS, 2010-2021. Terms of use.
No part of the Geoportal and/or Geoportal content can be reproduced in any form whether electronically or otherwise without the prior consent of the copyright holder. You must provide a link to the Geoportal from your own website.