Библиография
Вулкан:
Группировать:  
Записей: 2752
Котенко Т.А., Мельников Д.В., Тарасов К.В. Газовая эмиссия вулкана Эбеко (Курильские острова) в 2003–2021 гг.: геохимия, потоки и индикаторы активности // Вулканология и сейсмология. 2022. № 4. С. 31-46. doi: 10.31857/S0203030622040058.
   Аннотация
Приводятся новые данные о химическом и изотопном составе вулканических газов, эмиссии SO2 и почвенного CO2 действующего вулкана Эбеко. Вулкан извергался в 2009, 2010, 2011 гг., с октября 2016 г. по ноябрь 2021 г. Состав вулканических газов за 2003–2016, 2021 гг. получен в результате прямого опробования фумарол. Высокотемпературный газ (420–529°С) имеет состав, типичный для курильских магматических газов с атомным отношением C/S <1, содержанием HCl 5–7 ммоль/моль, изотопным составом конденсатов: δD ~ –24, δ18O = 2.6–4.9. Установлены геохимические предвестники извержений: увеличение концентраций CO2, Н2, SO2, H2S, HCl; падение отношения C/S вплоть до величин <1, характерного для магматических газов Курил; рост температуры; утяжеление изотопов δD и δ18O в конденсатах вулканического пара; увеличение газового потока. Методом накопительной камеры измерен высокий почвенный поток CO2 на двух термальных полях (до 10442 г/м2/сут), превышающий видимый фумарольный вынос (~50 т/сут против ~40 т/сут). Поток SO2 из активного кратера был измерен с помощью сканирующего УВ спектрометра ДОАС в 2020 и 2021 гг. и составил: 99 ± 28 и 9 ± 2.7 т/сут в газовых шлейфах, и 747 ± 220 и 450 ± 130 т/сут в пепловых шлейфах соответственно. Уменьшение эмиссии SO2 в августе 2021 г. связывается с дегазацией магмы перед завершением извержения.
Шеймович В.С., Кожемяка Н.Н., Важеевская А.А., Литасов Н.Е. Вулкан Большая Ипелька в Южно-Камчатской вулканической зоне // Бюллетень вулканологических станций. 1978. Т. 54. С. 89-96.
Кожемяка Н.Н., Литасов Н.Е., Важеевская А.А. Асачинская группа вулканов на Камчатке // Вулканология и сейсмология. 1984. № 3. С. 14-24.
Токарев П.И. Асачинский рой землетрясений и его природа (Камчатка, март-апрель, 1983) // Вулканология и сейсмология. 1984. Т. 3. С. 3-13.
Гирина О.А., Лупян Е.А., Маневич А.Г., Мельников Д.В., Сорокин А.А., Крамарева Л.С., Романова И.М., Нуждаев А.А., Уваров И.А., Мальковский С.И., Королев С.П. Дистанционный мониторинг вершинного и побочного извержений вулкана Ключевской (Камчатка) в 2020–2021 гг. // Современные проблемы дистанционного зондирования Земли из космоса. 2022. Т. 19. № 3. С. 153-161. https://doi.org/10.21046/2070-7401-2022-19-3-153-161.
   Аннотация
Вулкан Ключевской — один из наиболее активных вулканов мира. В 2020–2021 гг. вершинное эксплозивно-эффузивное извержение вулкана продолжалось 4 мес, затем, после перерыва в 9 дней, на северо-западном склоне вулкана произошёл боковой прорыв, работавший в течение месяца. Вершинное эксплозивное извержение проявлялось преимущественно в стромболианской и изредка в вулканской активности. Эксплозии поднимали пепел до 8 км над уровнем моря, пепловые шлейфы перемещались до 500 км в различных направлениях от вулкана. Эффузивная фаза извержения началась 4 октября 2020 г. и продолжалась до окончания извержения, лавовые потоки двигались по Апахончичскому и Козыревскому вулкано-тектоническим желобам. Перемещение лавовых потоков по Апахончичскому жёлобу часто сопровождалось крупными обвалами тефры с его бортов, пепел при этом поднимался до 9,6 км над уровнем моря. Боковой прорыв представлял собой образование двух трещин на северо-западном склоне вулкана, заполнившихся лавой, и формирование в верхней части западной трещины шлакового конуса. Лавовый поток протянулся на 1,2 км, грязевой поток — на 30 км. Детальное описание хода извержения стало возможным благодаря мониторингу вулкана в реальном времени с помощью различных спутниковых данных в информационной системе «Дистанционный мониторинг активности вулканов Камчатки и Курил» (VolSatView, http://kamchatka.volcanoes.smislab.ru) и видеонаблюдений.
Girina O.A., Malkovsky S.I., Sorokin A.A., Loupian E.A., Korolev S.P. Numerical Modeling of the Ash Cloud Movement from the Catastrophic Eruption of the Sheveluch Volcano in November 1964 // Remote Sensing. 2022. Вып. 14. № 3449. https://doi.org/10.3390/rs14143449.
   Аннотация
This paper reconstructs, for the first time, the motion dynamics of an eruptive cloud formed during the catastrophic eruption of the Sheveluch volcano in November 1964 (Volcanic Explosivity Index 4+). This became possible due to the public availability of atmospheric reanalysis data from the ERA-40 archive of the European Center for Medium-Range Weather Forecasts (ECMWF) and the development of numerical modeling of volcanic ash cloud propagation. The simulation of the eruptive cloud motion process, which was carried out using the FALL3D and PUFF models, made it possible to clarify the sequence of events of this eruption (destruction of extrusive domes in the crater and the formation of an eruptive column and pyroclastic flows), which lasted only 1 h 12 min. During the eruption, the ash cloud consisted of two parts: the main eruptive cloud that rose up to 15,000 m above sea level (a.s.l.), and the co-ignimbrite cloud that formed above the moving pyroclastic flows. The ashfall in Ust-Kamchatsk (Kamchatka) first occurred out of the eruptive cloud moving at a higher speed, then out of the co-ignimbrite cloud. In Nikolskoye (Bering Island, Commander Islands), ash fell only out of the co-ignimbrite cloud. Under the turbulent diffusion, the forefront of the main eruptive cloud rose slowly in the atmosphere and reached 16,500 m a.s.l. by 04:07 UTC on November 12. Three days after the eruption began, the eruptive cloud stretched for 3000 km over the territories of the countries of Russia, Canada, the USA, Mexico, and over both the Bering Sea and the Pacific Ocean. It is assumed that the well-known long-term decrease in the solar radiation intensity in the northern latitudes from 1963–1966, which was established according to the world remote sensing data, was associated with the spread of aerosol clouds formed not only by the Agung volcano, but those formed during the 1964 Sheveluch volcano catastrophic eruption
Эрлих Э.Н. Современная структура и четвертичный вулканизм западной части тихоокеанского кольца. 2010.
   Аннотация
Читателю представляется интернет-версия книги автора о соотношении современной структуры и четвертичного вулканизма западной части Тихоокеанского кольца.
Книга в ее настоящем виде обращена к самому широкому кругу читателей-геологов, особенно к молодежи и тем, кто работает в области соотношения магматизма и тектоники
Tolstikhin I.N., Mamyrin B.A., Khabarin L.B., Erlikh E.N. Isotope composition of helium in ultrabasic xenoliths from volcanic rocks of Kamchatka // Earth and Planetary Science Letters. 1974. Vol. 22. № 1. P. 75-84.
   Аннотация
The purpose of this work is to refine our knowledge about the nature of helium with a high abundance of the rare isotope3He(3He/4He= 10−5) discovered in terrestrial volcanic gases in 1968.
We will discuss here the results of isotope analyses of helium released by step-wise heating of ultrabasic xenoliths and some volcanic rocks. On the basis of these results, possible sources of3He in the earth due to fission and nuclear reactions are considered critically. The most probable source of the high abundance of3He is shown to be due to the capture and trapping of primordial He by the earth during its formation (primordial helium3He/4He= 3 × 10−4), a small but significant fraction of which has been retained to the present time.
Горшков А.П., Гребзды Э.И., Самойленко Б.И., Слезин Ю.Б. К расчету баланса тепла и массы кратерного озера вулкана Малый Семячик // Бюл. вулканол. станций. 1975. № 51. С. 50-59.
Churikova T., Dorendorf F., Wörner G. Sources and Fluids in the Mantle Wedge below Kamchatka, Evidence from Across-arc Geochemical Variation // Journal of Petrology. 2001. Vol. 42. № 8. P. 1567-1593. doi:10.1093/petrology/42.8.1567.
   Аннотация
Major and trace element and Sr–Nd–Pb isotopic variations in mafic volcanic rocks hve been studied in a 220 km transect across the Kamchatka arc from the Eastern Volcanic Front, over the Central Kamchatka Depression to the Sredinny Ridge in the back-arc. Thirteen volcanoes and lava fields, from 110 to 400 km above the subducted slab, were sampled. This allows us to characterize spatial variations and the relative amount and composition of the slab fluid involved in magma genesis. Typical Kamchatka arc basalts, normalized for fractionation to 6% MgO, display a strong increase in large ion lithophile, light rare earth and high field strength elements from the arc front to the back-arc. Ba/Zr and Ce/Pb ratios, however, are nearly constant across the arc, which suggests a similar fluid input for Ba and Pb. La/Yb and Nb/Zr increase from the arc front to the back-arc. Rocks from the Central Kamchatka Depression range in 87Sr/86Sr from 0·70334 to 0·70366, but have almost constant Nd isotopic compositions (143Nd/144Nd 0·51307–0·51312). This correlates with the highest U/Th ratios in these rocks. Pb-isotopic ratios are mid-ocean ridge basalt (MORB)-like but decrease slightly from the volcanic front to the back-arc. The initial mantle source ranged from N-MORB-like in the volcanic front and Central Kamchatka Depression to more enriched in the back-arc. This enriched component is similar to an ocean-island basalt (OIB) source. Variations in (CaO)6·0–(Na2O)6·0 show that degree of melting decreases from the arc front to the Central Kamchatka Depression and remains constant from there to the Sredinny Ridge. Calculated fluid compositions have a similar trace element pattern across the arc, although minor differences are implied. A model is presented that quantifies the various mantle components (variably depleted N-MORB-mantle and enriched OIB-mantle) and the fluid compositions added to this mantle wedge. The amount of fluid added ranges from 0·7 to 2·1%. The degree of melting changes from ∼20% at the arc front to <10% below the back-arc region. The rocks from volcanoes of the northern part of the Central Kamchatka Depression—to the north of the transect considered in this study—are significantly different in their trace element compositions compared with the other rocks of the transect and their source appears to have been enriched by a component derived from melting of the edge of the ruptured slab.