Main BibliographyПо типу публикаций
 
 Bibliography
Volcano:

 
Jump to:     All     Articles     Books     Books sections     Dissertations     Conference Items     Documents     Copyright certificates     Weblinks     Other     
Records: 2235
Pages:  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
Articles
Paris Raphaël, Switzer Adam D., Belousova Marina, Belousov Alexander, Ontowirjo Budianto, Whelley Patrick L., Ulvrova Martina Volcanic tsunami: a review of source mechanisms, past events and hazards in Southeast Asia (Indonesia, Philippines, Papua New Guinea) // Natural Hazards. 2014. V. 70. № 1. P. 447-470. doi:10.1007/s11069-013-0822-8.
Paris Raphaël, Wassmer Patrick, Lavigne Franck, Belousov Alexander, Belousova Marina, Iskandarsyah Yan, Benbakkar Mhammed, Ontowirjo Budianto, Mazzoni Nelly Coupling eruption and tsunami records: the Krakatau 1883 case study, Indonesia // Bulletin of Volcanology. 2014. V. 76. № 4. doi:10.1007/s00445-014-0814-x.
Pendea Ionel Florin, Ponomareva Vera, Bourgeois Joanne, Zubrow Ezra B.W., Portnyagin Maxim, Ponkratova Irina, Harmsen Hans, Korosec Gregory Late Glacial to Holocene paleoenvironmental change on the northwestern Pacific seaboard, Kamchatka Peninsula (Russia) // Quaternary Science Reviews. 2017. V. 157. P. 14-28. doi:10.1016/j.quascirev.2016.11.035.    Annotation
We used a new sedimentary record from a small kettle wetland to reconstruct the Late Glacial and Holocene vegetation and fire history of the Krutoberegovo-Ust Kamchatsk region in eastern Kamchatka Peninsula (Russia). Pollen and charcoal data suggest that the Late Glacial landscape was dominated by a relatively fire-prone Larix forest-tundra during the Greenland Interstadial complex (GI 1) and a subarctic steppe during the Younger Dryas (GS1). The onset of the Holocene is marked by the reappearance of trees (mainly Alnus incana) within a fern and shrub dominated landscape. The Holocene Thermal Maximum (HTM) features shifting vegetational communities dominated by Alnus shrubs, diverse forb species, and locally abundant aquatic plants. The HTM is further defined by the first appearance of stone birch forests (Betula ermanii) – Kamchatka's most abundant modern tree species. The Late Holocene is marked by shifts in forest dynamics and forest-graminoid ratio and the appearance of new non-arboreal taxa such as bayberry (Myrica) and meadow rue (Filipendula). Kamchatka is one of Earth's most active volcanic regions. During the Late Glacial and Holocene, Kamchatka's volcanoes spread large quantities of tephra over the study region. Thirty-four tephra falls have been identified at the site. The events represented by most of these tephra falls have not left evidence of major impacts on the vegetation although some of the thicker tephras caused expansion of grasses (Poaceae) and, at least in one case, forest die-out and increased fire activity.
Pevzner M.M. Holocene volcanism of Northern Kamchatka: The spatiotemporal aspect // Doklady Earth Sciences. 2006. Т. 409. № 2. С. 884-887. doi: 10.1134/S1028334X06060109.
Pevzner M.M. New data on Holocene monogenetic volcanism of the Northern Kamchatka: ages and space distribution // Abstracts. 4rd Biennial Workshop on Subduction Processes emphasizing the Kurile-Kamchatka-Aleutian Arcs (JKASP-4). Linkages among tectonics, seismicity, magma genesis, and eruption in volcanic arcs. August 21-27, 2004. Petropavlovsk-Kamchatsky: Institute of Volcanology and Seismology FEB RAS. 2004. С. 72-76.
Pevzner M.M. The First Geological Data on the Chronology of Holocene Eruptive Activity in the Ichinskii Volcano (Sredinnyi Ridge, Kamchatka) // Doklady Earth Sciences. 2004. V. 395A. № 3. P. 335-337.
Piip B.I. Kronotzk ignimbrites in Kamchatka // Bulletin of Volcanology. 1963. V. 25. № 1. P. 31-32. doi: 10.1007/BF02596535.
Plechov Pavel, Blundy Jon, Nekrylov Nikolay, Melekhova Elena, Shcherbakov Vasily, Tikhonova Margarita S. Petrology and volatile content of magmas erupted from Tolbachik Volcano, Kamchatka, 2012–13 // Journal of Volcanology and Geothermal Research. 2015. V. 307. P. 182 - 199. doi: 10.1016/j.jvolgeores.2015.08.011.    Annotation
Abstract We report petrography, and bulk rock, mineral and glass analyses of eruptive products of the 2012–13 eruption of Tolbachik volcano, Central Kamchatka Depression, Russia. Magmas are shoshonitic in composition, with phenocrysts of olivine and plagioclase; clinopyroxene phenocrysts are scarce. Samples collected as bombs from the active vent, from liquid lava at the active lava front, and as naturally solidified “toothpaste” lava allow us to quantify changes in porosity and crystallinity that took place during 5.25 km of lava flow and during solidification. Olivine-hosted melt inclusions from rapidly-cooled, mm-size tephra have near-constant {H2O} contents (1.19 ± 0.1 wt) over a wide range of {CO2} contents (< 900 ppm), consistent with degassing. The groundmass glasses from tephras lie at the shallow end of this degassing trend with 0.3 wt {H2O} and 50 ppm CO2. The presence of small saturation, rather than shrinkage, bubbles testifies to volatile saturation at the time of entrapment. Calculated saturation pressures are 0.3 to 1.7 kbar, in agreement with the depths of earthquake swarms during November 2012 (0.6 to 7.5 km below the volcano). Melt inclusions from slowly-cooled and hot-collected lavas have {H2O} contents that are lower by an order of magnitude than tephras, despite comparable {CO2} contents. We ascribe this to diffusive {H2O} loss through olivine host crystals during cooling. The absence of shrinkage bubbles in the inclusions accounts for the lack of reduction in dissolved {CO2} (and S and Cl). Melt inclusions from tephras experienced < 3 wt post-entrapment crystallisation. Melt inclusion entrapment temperatures are around 1080 °C. Compared to magmas erupted elsewhere in the Kluchevskoy Group, the 2012–13 Tolbachik magmas appear to derive from an unusually H2O-poor and K2O-rich basaltic parent.
Ponomareva V.V., Kyle P.R., Melekestsev I.V., Rinkleff P.G., Dirksen O.V., Sulerzhitsky L.D., Zaretskaia N.E., Rourke R. The 7600 (14C) year BP Kurile Lake caldera-forming eruption, Kamchatka, Russia: stratigraphy and field relationships // Journal of Volcanology and Geothermal Research. 2004. V. 136. № 3-4. P. 199-222. doi:10.1016/j.jvolgeores.2004.05.013.    Annotation
The 7600 14C-year-old Kurile Lake caldera-forming eruption (KO) in southern Kamchatka, Russia, produced a 7-km-wide caldera now mostly filled by the Kurile Lake. The KO eruption has a conservatively estimated tephra volume of 140–170 km3 making it the largest Holocene eruption in the Kurile–Kamchatka volcanic arc and ranking it among the Earth’s largest Holocene explosive eruptions. The eruptive sequence consists of three main units: (I) initial phreatoplinian deposits; (II) plinian fall deposits, and (III) a voluminous and extensive ignimbrite sheet and accompanying surge beds and co-ignimbrite fallout. The KO fall tephra was dispersed over an area of >3 million km2, mostly in a northwest direction. It is a valuable stratigraphic marker for southern Kamchatka, the Sea of Okhotsk, and a large part of the Asia mainland, where it has been identified as a f6 to 0.1 cm thick layer in terrestrial and lake sediments, 1000–1700 km from source. The ignimbrite, which constitutes a significant volume of the KO deposits, extends to the Sea of Okhotsk and the Pacific Ocean on either side of the peninsula, a distance of over 50 km from source. Fine co-ignimbrite ash was likely formed when the ignimbrite entered the sea and could account for the wide dispersal of the KO fall unit. Individual pumice clasts from the fall and surge deposits range from dacite to rhyolite, whereas pumice and scoria clasts in the ignimbrite range from basaltic andesite to rhyolite. Ignimbrite exposed west and south of the caldera is dominantly rhyolite, whereas north, east and southeast of the caldera it has a strong vertical compositional zonation from rhyolite at the base to basaltic andesite in the middle, and back to rhyolite at the top. Following the KO eruption, Iliinsky volcano formed within the northeastern part of the caldera producing basalt to dacite lavas and pyroclastic rocks compositionally related to the KO erupted products. Other post-caldera features include several extrusive domes, which form islands in Kurile Lake, submerged cinder cones and the huge silicic extrusive massif of Dikii Greben’ volcano.
Ponomareva V.V., Pevzner M.M., Melekestsev I.V. Large debris avalanches and associated eruptions in the Holocene eruptive history of Shiveluch Volcano, Kamchatka, Russia // Bulletin of Volcanology. 1998. V. 59. № 7. P. 490-505. doi: 10.1007/s004450050206.    Annotation
Shiveluch Volcano, located in the Central Kamchatka Depression, has experienced multiple flank failures during its lifetime, most recently in 1964. The overlapping deposits of at least 13 large Holocene debris avalanches cover an area of approximately 200 km2 of the southern sector of the volcano. Deposits of two debris avalanches associated with flank extrusive domes are, in addition, located on its western slope. The maximum travel distance of individual Holocene avalanches exceeds 20 km, and their volumes reach ∼3 km3. The deposits of most avalanches typically have a hummocky surface, are poorly sorted and graded, and contain angular heterogeneous rock fragments of various sizes surrounded by coarse to fine matrix. The deposits differ in color, indicating different sources on the edifice. Tephrochronological and radiocarbon dating of the avalanches shows that the first large Holocene avalanches were emplaced approximately 4530–4350 BC. From ∼2490 BC at least 13 avalanches occurred after intervals of 30–900 years. Six large avalanches were emplaced between 120 and 970 AD, with recurrence intervals of 30–340 years. All the debris avalanches were followed by eruptions that produced various types of pyroclastic deposits. Features of some surge deposits suggest that they might have originated as a result of directed blasts triggered by rockslides. Most avalanche deposits are composed of fresh andesitic rocks of extrusive domes, so the avalanches might have resulted from the high magma supply rate and the repetitive formation of the domes. No trace of the 1854 summit failure mentioned in historical records has been found beyond 8 km from the crater; perhaps witnesses exaggerated or misinterpreted the events.





 

Recommended browsers for viewing this site: Google Chrome, Mozilla Firefox, Opera, Yandex. Using another browser may cause incorrect browsing of webpages.
 
Terms of use of IVS FEB RAS Geoportal materials and services

Copyright © Institute of Volcanology and Seismology FEB RAS, 2010-2020. Terms of use.
No part of the Geoportal and/or Geoportal content can be reproduced in any form whether electronically or otherwise without the prior consent of the copyright holder. You must provide a link to the Geoportal geoportal.kscnet.ru from your own website.
 
©Design: roman@kscnet.ru