Bibliography
Volcano:
Group by:  
Jump to:     All     Articles     Books     Books sections     Dissertations     Conference Items     Documents     Copyright certificates     Weblinks     Other     
Records: 2276
Articles
Ozerov A.Yu., Murav’ev Ya.D., Frisbie A.J. The 1996 Eruption of Karymsky Volcano and the Composition of its Products, Kamchatka, Russia // AGU Spring Meeting 1997 Abstracts. Baltimore, Maryland: AGU. 1997. P. V22A-04.
Ozerov Alexei Y. The evolution of high-alumina basalts of the Klyuchevskoy volcano, Kamchatka, Russia, based on microprobe analyses of mineral inclusions // Journal of Volcanology and Geothermal Research. 2000. V. 95. № 1–4. P. 65 - 79. doi: 10.1016/S0377-0273(99)00118-3.    Annotation
The origin of calc-alkaline high-alumina basalts (HAB) of the Klyuchevskoy volcano, Kamchatka, was examined using electron microprobe analyses of phenocrysts and mineral phases included in the phenocrysts. Continuous trends on major-element variation diagrams suggest the HAB were derived from high-magnesia basalt (HMB) by fractional crystallization. Phenocrysts in the HAB are strongly zoned: olivine (Mg# 91–64), clinopyroxene (Wo45–38En40–51Fs5–20) and chrome—spinel/magnetite inclusions in them (Cr2O3 45–0 wt.%, TiO2 0.5–11%). Microprobe analyses of minerals included in the phenocrysts provide additional constraints on the mineral crystallization trends in the HAB. Fe/Mg partitioning data, when applied to the phenocrysts cores, show they crystallized from a HMB. The similarity of phenocryst core compositions in HAB with those in HMB strongly suggests a genetic relationship between the two magma types.
Ozerova N., Ozerov A. Atmochemical halos of mercury (Hg) within the area of active volcanic edifices in Kamchatka // IAVCEI 2008 - General Assembly, Reykjavik, Iceland. Abstracts. 2008. P. 7
Panov V.K., Slezin Yu.B. The mechanism of the lava field formation at the Predskazanny parasitic eruption (Klyuchevskoy volcano, 1983) // Volcanology and Seismology. 1988. V. 7. P. 321-335.
Panov V.K., Slezin Yu.B., Storcheus A.V. Mechanical properties of lava extruded in the 1983 Predskazanny eruption (Klyuchevskoi volcano) // Volcanology and Seismology. 1988. V. 7. P. 25-37.
Paris Raphaël, Switzer Adam D., Belousova Marina, Belousov Alexander, Ontowirjo Budianto, Whelley Patrick L., Ulvrova Martina Volcanic tsunami: a review of source mechanisms, past events and hazards in Southeast Asia (Indonesia, Philippines, Papua New Guinea) // Natural Hazards. 2014. V. 70. № 1. P. 447-470. doi:10.1007/s11069-013-0822-8.
Paris Raphaël, Wassmer Patrick, Lavigne Franck, Belousov Alexander, Belousova Marina, Iskandarsyah Yan, Benbakkar Mhammed, Ontowirjo Budianto, Mazzoni Nelly Coupling eruption and tsunami records: the Krakatau 1883 case study, Indonesia // Bulletin of Volcanology. 2014. V. 76. № 4. doi:10.1007/s00445-014-0814-x.
Pendea Ionel Florin, Ponomareva Vera, Bourgeois Joanne, Zubrow Ezra B.W., Portnyagin Maxim, Ponkratova Irina, Harmsen Hans, Korosec Gregory Late Glacial to Holocene paleoenvironmental change on the northwestern Pacific seaboard, Kamchatka Peninsula (Russia) // Quaternary Science Reviews. 2017. V. 157. P. 14-28. doi:10.1016/j.quascirev.2016.11.035.    Annotation
We used a new sedimentary record from a small kettle wetland to reconstruct the Late Glacial and Holocene vegetation and fire history of the Krutoberegovo-Ust Kamchatsk region in eastern Kamchatka Peninsula (Russia). Pollen and charcoal data suggest that the Late Glacial landscape was dominated by a relatively fire-prone Larix forest-tundra during the Greenland Interstadial complex (GI 1) and a subarctic steppe during the Younger Dryas (GS1). The onset of the Holocene is marked by the reappearance of trees (mainly Alnus incana) within a fern and shrub dominated landscape. The Holocene Thermal Maximum (HTM) features shifting vegetational communities dominated by Alnus shrubs, diverse forb species, and locally abundant aquatic plants. The HTM is further defined by the first appearance of stone birch forests (Betula ermanii) – Kamchatka's most abundant modern tree species. The Late Holocene is marked by shifts in forest dynamics and forest-graminoid ratio and the appearance of new non-arboreal taxa such as bayberry (Myrica) and meadow rue (Filipendula). Kamchatka is one of Earth's most active volcanic regions. During the Late Glacial and Holocene, Kamchatka's volcanoes spread large quantities of tephra over the study region. Thirty-four tephra falls have been identified at the site. The events represented by most of these tephra falls have not left evidence of major impacts on the vegetation although some of the thicker tephras caused expansion of grasses (Poaceae) and, at least in one case, forest die-out and increased fire activity.
Pevzner M.M. Holocene volcanism of Northern Kamchatka: The spatiotemporal aspect // Doklady Earth Sciences. 2006. Т. 409. № 2. С. 884-887. doi: 10.1134/S1028334X06060109.
Pevzner M.M. New data on Holocene monogenetic volcanism of the Northern Kamchatka: ages and space distribution // Abstracts. 4rd Biennial Workshop on Subduction Processes emphasizing the Kurile-Kamchatka-Aleutian Arcs (JKASP-4). Linkages among tectonics, seismicity, magma genesis, and eruption in volcanic arcs. August 21-27, 2004. Petropavlovsk-Kamchatsky: Institute of Volcanology and Seismology FEB RAS. 2004. С. 72-76.



Recommended browsers for viewing this site: Google Chrome, Mozilla Firefox, Opera, Yandex. Using another browser may cause incorrect browsing of webpages.
 
Terms of use of IVS FEB RAS Geoportal materials and services

Copyright © Institute of Volcanology and Seismology FEB RAS, 2010-2020. Terms of use.
No part of the Geoportal and/or Geoportal content can be reproduced in any form whether electronically or otherwise without the prior consent of the copyright holder. You must provide a link to the Geoportal geoportal.kscnet.ru from your own website.
 
©Development&Design: roman@kscnet.ru