Bibliography
Volcano:
Group by:  
Jump to:     All     Articles     Books     Books sections     Dissertations     Conference Items     Documents     Copyright certificates     Weblinks     Other     
Records: 1974
Articles
Malkovsky S.I., Sorokin A.A., Korolev S.P., Girina O.A., Loupian E.A. Models of Volcanic Ash Propagation for the Exploration of Explosive Eruptions of Kamchatka Volcanoes // JKASP-2018. Petropavlovsk-Kamchatsky: IVS FEB RAS. 2018.
Manevich A.G., Girina O.A., Melnikov D.V., Nuzhdaev A.A. 2016-2017 explosive eruptions of Kamchatka volcanoes based on KVERT data // JKASP-2018. Petropavlovsk-Kamchatsky: IVS FEB RAS. 2018.
Mania Rene, Walter Thomas, Belousova Marina, Belousov Alexander, Senyukov Sergey Deformations and Morphology Changes Associated with the 2016–2017 Eruption Sequence at Bezymianny Volcano, Kamchatka // Remote Sensing. 2019. № 11. P. 1278 doi: 10.3390/rs11111278.
Marchenko A. G., Volfson A. A., Morozov M. V., Khrol N. S., Steinberg G. S., Steinberg M. G. Geochemical Characteristics of Volcanogenic Deposits and Exhalation Mineralization in the Crater Part of the Active Kudryavy Volcano (Iturup Island of the Kuril Arc) // Geology of Ore Deposits. 2020. Vol. 62. № 2. P. 122-137. doi:10.1134/S1075701520020038.
   Annotation
Exhalation ore mineralization is developing in the crater part of the active Kudryavy volcano. Lithogeochemical sampling results have revealed that Re, Au, Ag, As, Bi, Cd, Cu, Ge, In, Mo, Pb, S, Sb, Se, Sn, Te, Tl, W, Zn, Rb, and Cs accumulate in solid fumarole formations. These elements are transported by high-temperature volcanic gases and are deposited in mineral phases in the near-surface horizons of fumarole fields under decreasing temperature conditions. The contents of rhenium and other metals in volcanic deposits of fumarole fields locally reach values characteristic of ore deposits. Zoning of lithogeochemical anomalies in ore element associations has been revealed, expressed by the series Re, Mo, W, Au, Cu, Ag, Zn, Cs, Ge → In → Bi, Cd, Pb, Sn, Tl → As, Sb, Se, Te, (Cu, Ag, Au) in the direction from the highest-temperature fumarole fields to less hot, reflecting their temperature zoning. It is demonstrated that lateral geochemical zoning is caused both by the ore element contents in fumarole gases, which depend on temperature, and by differences in the optimal temperature ranges in which various elements precipitate from gases. Signatures for similar exhalation mineral formation processes have been revealed that occurred in the recent geological past at the neighboring extinct Sredny volcano. This suggests the occurrence of similar processes within other volcanic systems of Iturup Island, which increases the prospects for detecting complex exhalation-related manifestations of rare, base, and noble metals.
Markhinin E.K. On the State of Kunashir Island Volcanoes (March, 1974 - May, 1982) // Volcanology and Seismology. 1983. № 1. P. 45-52.
Markhinin E.K. Volcanism and the Biosphere // Volcanology and Seismology. 1988. Vol. 7. № 4. P. 483-496.
Matoba S., Shiraiwa T., Tsushima A., Sasaki H., Muravyev Y.D. Records of sea-ice extent and air temperature at the Sea of Okhotsk from an ice core of Mount Ichinsky, Kamchatka // Annaly of Glaciology . 2011. Vol. 52. № 58. P. 44-50. doi: 10.3189/172756411797252149.
   Annotation
The Sea of Okhotsk is the southernmost area in the Northern Hemisphere where seasonal sea ice is produced every year. The formation of sea ice drives thermohaline circulation in the Sea of Okhotsk, and this circulation supports the high productivity in the region. However, recent reports have indicated that sea-ice production in the Sea of Okhotsk is decreasing, raising concern that the decreased sea ice will affect not only circulation but also biological productivity in the sea. To reconstruct climatic changes in the Sea of Okhotsk region, we analyzed an ice core obtained from Ichinskaya Sopka (Mount Ichinsky), Kamchatka. We assumed that the remarkable negative peaks of δD in the ice core were caused by expansion of sea ice in the Sea of Okhotsk. Melt feature percentage (MFP), which indicates summer snowmelt, showed high values in the 1950–60s and the mid-1990s–2000s. The high MFP in the 1950–60s was assumed to be caused by an increase in cyclone activity reaching Kamchatka during a negative period of the Pacific Decadal Oscillation index, and that in the 1990–2000s may reflect the increase in solar irradiation during a positive period of the summer Arctic Oscillation index.
Maximov A.P. Physicochemical mechanism of the deep degassing of aqueous magmas // Experiment in Geosciences. 2001. Vol. 10. № 1. P. 122-123.
Melekestsev I.V. Ages and stages of development of the Kurile - Kamchatka active volcanoes // Arc Volcanism: Physics and Tectonics. Proceedings of a 1981 IAVCEI Symposium, Arc Volcanism, August-September, 1981, Tokyo and Hakone. Tokyo: Terra Scientific Publishing Co. 1983. P. 230-231.
Melekestsev I.V. On probability of catastrophic explosive eruptions in the Kurile - Kamchatka volcanic area in future // Kagoshima International Conference on Volcanoes. Abstracts. Kagoshima: 1988. P. 382